Imperial College of Science, Technology and Medicine
University of London

Department of Computing

A Policy Framework for Management
of Distributed Systems

Nicodemos C. Damianou

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in the
Faculty of Engineering of the University of London, and for the Diploma of the Imperial College of Science,
Technology and Medicine

London, February 2002

www.manaraa.com

2Tovg yoveig pov, Kwvaravtivo kai Zogia

(To my parents Constantinos and Sofia)

www.manaraa.com

Abstract

Policy-based management is one of the latest developments in network and distributed systems
management. Academic and commercial settings, as well as standardisation bodies are
concentrating on policy-based management as a very promising solution for managing large-scale
distributed systems. The use of policy-based management in areas such as security is particularly
attractive. The introduction of new technologies (e.g. active networks, mobile agents) and the use
of the Internet for providing services to customers, increase the security concerns associated with
today’s networked environments. Security management involves specification and deployment of
access control policies as well as activities such as registration of users or logging and auditing
events for dealing with access to critical resources or security violations. The management actions

to be performed when an event occurs depend on the enterprise policy.

The need is evident for a policy language to support the specification of access control and
other management policies. In this thesis we propose a policy framework to support security and
management of distributed systems. The framework consists of a policy specification language, an
architecture for deploying policies based on the language and a set of tools for specifying and
managing policies. In conjunction with the language, the toolkit permits integrated administration
of resources, people and policy information with automated policy deployment. The toolkit
comprises an Integrated Development Environment (IDE) with a policy compiler, as well as tools

for managing policies and roles at runtime.

The policy language is a declarative, object-oriented language for specifying security and
management policies for distributed object systems. The language is flexible, expressive and
extensible to cover the wide range of requirements implied by the current distributed systems
paradigms. It includes support for access control policies, and delegation to cater for temporary
transfer of access rights to agents acting on behalf of a client. The language also supports policies
to express management activity, which take the form of event-triggered rules called obligation
policies. Domains are used to facilitate the specification of policies relating to large systems with
millions of objects; policies are specified for collections of objects stored in domains instead of
individual objects, thus allowing for scalability and flexibility. Composite policies are included to
allow the basic security and management policies relating to roles, organisational units and specific
applications to be grouped together. Composite policies are essential to cater for the complexity of
policy administration in large enterprise information systems. Application specific constraints on
groups of policies can be specified using meta-policies. The language is easy to use by policy users,

and we use a structural operational semantics approach to specify its formal semantics.

www.manaraa.com

Acknowledgements

My first and foremost thanks go to my supervisor Professor Morris Sloman. This thesis would not
have been possible without his inspiration, constructive criticism and experienced guidance. I thank
Morris for arranging for financial support during my PhD studies. | am also grateful to Dr. Emil
Lupu whose guidance, support and critical analysis were extremely important towards completion

of this thesis.

Special thanks also go to Dr. Naranker Dulay who has contributed a great deal to the work

presented in this thesis, with his useful comments and advice.

Many thanks to my friends and colleagues in the Distributed Software Engineering section for
many stimulating and pleasant discussions. These include: Roberto, Yiannis, Tyrone, Yiorgos,
Leonidas, Sebastian, Oscar, Dan, Krish, Sammy and Toshio. Thanks to all members of the DSE
section for making this a memorable experience. Special thanks to Siv Sivzattian who took the time

to read the thesis and provide me with invaluable comments.

My most profound gratitude goes to my family who have been the timeless source of inspiration for
me to pursue a doctorate; especially my parents Constantinos and Sofia, to whom this thesis is
dedicated. They have given me the opportunity to undertake this work and have been constantly

supporting me over the years.

iv

www.manaraa.com

Statement of Contribution

This thesis is the result of the author’s participation in work at Imperial College on distributed
systems policy-based management over the last 3 years. Many of the ideas developed in this thesis
are the result of group discussions with Professor Morris Sloman, Dr. Emil Lupu and Dr. Naranker

Dulay.

The thesis is motivated by and based on a policy-driven management model researched by Sloman
et al. The model includes management domains, management policies and role-based management
ideas, which are described in Chapter 2 and credited accordingly. This thesis develops these ideas
and presents a complete policy-based management framework, which includes a policy
specification language and an architecture for deploying policies. The policy specification language
did not exist in previous work and is a main contribution of this thesis. The same is true of the
architecture for deploying and enforcing policies which includes automated policy distribution to
their enforcement points, as well as dynamic adaptation to changes in the domains and managed
objects of the system. The formal semantics for the policy language presented in Chapter 5 is the

author’s individual work.

The implementation of the management tools and components of the management framework
described in this thesis are the author’s individual work with the exception of the domain browser
implemented by Toshio Tonouchi using the interfaces designed by the author to interact with the

other management tools.

\Y

www.manaraa.com

Table

Abstract

Acknowledgements

of Contents

Table of Contents

List of Figures

List of Abbreviations

11

1.2
1.2.1
1.2.2

1.3

14

2.1
2.1.1
2.1.2

2.2
2.2.1
2.2.2
2.2.3
224
225

2.3
2.3.1

24

25
2.5.1
252
2.5.3
254

v

Statement of Contribution \%
Vi

X

xii

Chapter 1 Introduction 14
Motivation 14
Policy Framework Requirements 17
Policy Specification Language 18
Policy Deployment 19
Contribution 20
Thesis Structure 22
Chapter 2 Background and Related Work 24
Security Policy Overview 24
Access Control Models 25
Security Management 30
Policy Specification Approaches 32
Logic-Based Authorisation Languages 33
High-level Policy Languages for Security 37
Trust Specification 42
Management Policy Specification 43
Network Policy Specification 48
Policy Management Architectures 51
Security Architectures 52
Tool Support 53
Background Work 55
Domains 55
Policy Concepts 57
Role-based Management Framework 60
Problems 62

Vi

www.manaraa.com

Table of Contents vii
2.6 Conclusions 63
Chapter 3 Basic Policy Constructs 65
3.1 Information Model 65
3.2 Domain Scope Expressions 67
3.3 Access Control Policies 68
3.3.1 Authorisation Policies 68
3.3.2 Basic Policy Constraints 70
3.3.3 Information Filtering 71
3.3.4 Delegation Policies 73

3.4 Subject-based Policies 79
3.4.1 Obligation Policies 79
3.4.2 Refrain Policies 83

35 Common Elements Specification 84
3.5.1 Event Definitions 84
3.5.2 Constraint Definitions 84
3.5.3 Constant Definitions 85
3.5.4 External Specifications 85

3.6 Security Policy Examples 86
3.7 Conclusions 91
Chapter 4 Composite Policy Features 93
4.1 Introduction 93
4.2 Groups 94
4.3 Roles 95
4.3.1 Type Specialisation 96

44 Role Relationships and Management Structures 97
4.4.1 Management Structures 98
4.4.2 Example: Security Quality Assurance in SLA Management 99

4.5 Meta Policies 103
4.5.1 Constraint Policy Examples 104

4.6 Additional Language Features 108
4.6.1 Example Composite Policy Specification 109

4.7 Conclusions 110
Chapter 5 A Structural Operational Semantics 112
51 Introduction 112
5.2 Overall Structure of the Operational Semantics 113
5.2.1 Lookup Functions, State, Store and Object Operations 114

www.manaraa.com

viii

Table of Contents

5.2.2 Modelling Runtime Commands 115
5.3 Authorisation Policy Semantics 117
5.3.1 Program Execution, Types and Instantiation 117
5.3.2 Action Execution, Access Control Decision 119
5.3.3 Constraints and Subject/Target Evaluations 122
5.3.4 Policy Life-Cycle Commands 125
5.4 Delegation Policies 125
5.4.1 Mapping Delegation to Authorisation Policies 125
5.4.2 Semantic Rules 127
55 Obligation Policies 129
5.5.1 Events 129
5.5.2 Obligation Policy Execution 131
5.6 Composite Policies 134
5.6.1 Groups 134
5.6.2 Roles 135
5.7 Domain System Model 136
5.8 Conclusions 137
Chapter 6 Policy Compiler 138
6.1 Scenario 138
6.2 Design Choices 139
6.2.1 Policies as Runtime Objects 140
6.3 Compiler Design and Implementation 146
6.4 Policy Specification Support 149
6.5 Conclusions 151
Chapter 7 Policy Management Platform 152
7.1 Deployment Model Overview 152
7.2 Policy Administration Toolkit 154
7.2.1 Main Console 155
7.3 Policy Distribution 157
7.3.1 Management Console Tool 158
7.3.2 Domain Membership Changes 159
7.4 Policy Management Component 163
7.4.1 Evaluating Constraints 165
7.4.2 Enforcing Refrains 165
7.4.3 Handling Events 166
7.5 Access Control Enforcement 168

www.manaraa.com

Table of Contents ix
7.6 Composite Policy Enforcement 170
7.6.1 Groups 170

7.6.2 Role-based Management 170

7.7 Conclusions 174
Chapter 8 Critical Analysis 176
8.1 Relationship to Relevant Work 176
8.2 Critical Evaluation of the Framework 179
8.2.1 Policy Language Design 179

8.2.2 Management Architecture 181

8.3 Critical Evaluation of the Implementation 183
8.4 Conclusions 186
Chapter 9 Conclusions 187
9.1 Review and Discussion of Achievements 187
9.2 Future Work 192
9.2.1 Language Specification 192

9.2.2 Deployment Model and Implementation 192

9.2.3 Management Toolkit 193

9.3 Closing Remarks 194
Bibliography 195
Appendix A Information Model 203
A.l Class Diagram 203
Appendix B Syntax Specification 204
B.1 Grammar 204
B.2 Predefined Libraries 218
Appendix C Formal Semantics 220
C.1 Abstract Syntax 220
C.2 Structural Operational Semantics 222
C.3 Alloy Model for the Domain System 232

www.manaraa.com

List of Figures

Figure 2.1 Policy survey areas

24

Figure 2.2 Classification of access control models

25

Figure 2.3 Policy levels and specification approaches

33

Figure 2.4 A UML meta-model of the enterprise viewpoint language
Figure 2.5 IETF policy core information model

46

50

Figure 2.6 IETF policy architecture

51

Figure 2.7 The Strongman security architecture

53

Figure 2.8 Graphical display of a domain structure

56

Figure 2.9 Domain browser

57

Figure 2.10 The role model

61

Figure 3.1 Basic policy object class hierarchy

66

Figure 3.2 Domain scope expressions syntax

67

Figure 3.3 Authorisation Policy Syntax

69

Figure 3.4 Authorisation Types and Instantiations

69

Figure 3.5 Filters on Positive Authorisation Actions

72

Figure 3.6 Partial departmental information class diagram

73

Figure 3.7 Delegation policy syntax

74

Figure 3.8 Delegation policy example

75

Figure 3.9 Cascaded delegation

75

Figure 3.10 Relation between authorisation and delegation policies

76

Figure 3.11 A hypothetical domain structure

77

Figure 3.12 Delegation actions involved in printing a payroll file on a colour printer

Figure 3.13 Obligation policy syntax

78
80

Figure 3.14 Refrain policy syntax

83

85

Figure 3.15 Syntax for constant definitions

Figure 3.16 Mapping a label-only Bell-LaPadula policy to a domain structure

Figure 3.17 Mapping a Bell-LaPadula policy to a domain structure

90

91

Figure 4.1 Composite policy object class hierarchy

93

Figure 4.2 Group construct syntax

94

Figure 4.3 Role construct syntax

95

Figure 4.4 Inheritance syntax

96

Figure 4.5 A role hierarchy

97

Figure 4.6 Relationship construct syntax

97

Figure 4.7 Management structure syntax

98

X

www.manaraa.com

List of Figures Xi
Figure 4.8 Management structure components 98
Figure 4.9 Security quality assurance system architecture 99
Figure 4.10 Roles, relationships and management structures for a single TN region 100
Figure 4.11 Meta-policy syntax 103
Figure 4.12 Example policy specification 110
Figure 5.1 Overall semantics system 112
Figure 5.2 Configurations and transition rules 113
Figure 5.3 Policy life-cycle 116
Figure 5.4 Access control model 117
Figure 5.5 Example constraint on target state 122
Figure 5.6 Delegation hops 126
Figure 5.7 Configurations and transition rules for obligation policies 130
Figure 5.8 Obligation policy execution 131
Figure 5.9 Graphical alloy domain-system model 136
Figure 6.1 Research institution partial domain structure 139
Figure 6.2 Runtime basic policy object classes 141
Figure 6.3 Domain scope expression class hierarchy 141
Figure 6.4 Domain scope expression runtime representation 142
Figure 6.5 Constraint class hierarchy 142
Figure 6.6 Constraint runtime representation 143
Figure 6.7 Event class hierarchy 143
Figure 6.8 Events runtime representation 143
Figure 6.9 Obligation actions class hierarchy 144
Figure 6.10 Obligation action runtime representation 144
Figure 6.11 Positive authorisation actions runtime representation 145
Figure 6.12 Expression class hierarchy 145
Figure 6.13 Compiler framework 146
Figure 6.14 Compiler implementation 147
Figure 6.15 Generated Java code snapshot 148
Figure 6.16 Policy editor 149
Figure 7.1 Management system architecture 153
Figure 7.2 Management system architecture implementation 154
Figure 7.3 Policy management cycle 155
Figure 7.4 Toolkit main console and configuration tool 156
Figure 7.5 Tool implementation interfaces 156
Figure 7.6 Policy deployment steps 157
Figure 7.7 Management console tool 158

www.manaraa.com

Xii

List of Figures

Figure 7.8 Managing the policy life-cycle

159

Figure 7.9 Domain membership monitoring

Figure 7.10 Domain parent changes

160

162

Figure 7.11 Policy management component
Figure 7.12 Refrain filter tables

163

165

Figure 7.13 Event handler adapters

167

Figure 7.14 Event consumers

167

Figure 7.15 Access Control Enforcement

169

Figure 7.16 User-role management steps

173

Figure 7.17 User-role management tool

174

www.manaraa.com

List of Abbreviations

AC
ACO
AEO
AST
CIM
COPS
CORBA

DAC
DMTF

DSE
EC

IDE

IETF
JDMK
JMAPI

JMX
JNDI

LDAP

MAC
OoCL
OoCoO
OEO
OMG

Access Controller

Authorisation Control Object
Authorisation Enforcement Object
Abstract Syntax Tree

Common Information Model
Common Open Policy Service

Common Object Request Broker
Architecture

Discretionary Access Control

Distributed Management Task
Force

Domain Scope Expression
Enforcement Component
Intermediate Code

Integrated Development
Environment

Internet Engineering Task Force
Java Dynamic Management Kit

Java Management Application
Programming Interface

Java Management Extensions

Java Naming and Directory
Interface

Lightweight Directory Access
Protocol

Mandatory Access Control
Object Constraint Language
Obligation Control Object
Obligation Enforcement Object

Object Management Group

ORB
PCIM
PCO
PDP
PEP
PMC
RAT
RCO
REO
RPT
RBAC
RBM
SLA
SNMP

UPO
URD

Object Request Broker

Policy Core Information Model
Policy Control Object

Policy Decision Point

Policy Enforcement Point
Policy Management Component
Refrain Action Table

Refrain Control Object

Refrain Enforcement Object
Refrain Policy Table

Role Based Access Control
Role Based Management
Service Level Agreement

Simple Network Management
Protocol

User Profile Object

User Representation Domain

www.manaraa.com

Xiii

Chapter 1

Introduction

Policy-based management has recently become a widely employed and promising solution for
managing enterprise-wide networks and distributed systems. Such systems are driven by business
needs, which require management solutions that are both self-adapting and that dynamically
change the behaviour of the managed system. In today’s Internet-based environments security
concerns tend to increase as programmable mechanisms are introduced to enable such adaptation.
Furthermore, the heterogeneity of security mechanisms used to implement access control render
security management an important and difficult task. The focal point in the area of policy-based
management is the notion of policy as a means of driving management procedures. Although the
technologies for building management systems are available, work on the specification and
deployment of policies is still scarce. The precise and explicit specification of implementable
policies is important in order to achieve the organisational goals using currently available
technologies. In this thesis we address the problem of policy specification for enterprise-wide
distributed systems. We propose a policy specification language and show how this guides the
design of a strongly-distributed management architecture. In this chapter, we discuss the motivation
behind the ideas presented in this thesis, we identify the requirements for a policy management
framework, and conclude by highlighting our contribution and presenting an outline of the structure
of the thesis.

1.1 Motivation

A typical enterprise network system consists of a large number of heterogeneous network devices
such as routers, and servers running a variety of applications and offering services to a large
number of users. Devices, services, applications, servers and users as well as the relationships
between them are all targets of management systems used to manage enterprise networks. The
complexity of the managed systems results in high administrative costs and long deployment cycles
for business initiatives, and imposes two requirements on their management systems. Although
these requirements have long been recognised their importance is now becoming increasingly
critical: (i) management must be distributed in order to be scalable and cope with the size of

enterprise networks, and (ii) management procedures must be automated to reduce administrative

14

www.manaraa.com

Section 1.1. Motivation 15

costs. Manual management is expensive and the effort and time needed for management increases

exponentially as a system expands.

As networked systems are increasingly driven by changing business needs, their management
becomes even more complex. In order to adapt to changing business requirements, distributed
systems switch from the traditional client-server model to a service-driven model: “The service-
driven network is a new approach to the provision of network computing that concentrates on the
services you want to provide. These services range from the low-level services that manage
relationships between networked devices to the value-added services you provide to end-users.”
[Sun 1999a]. Networked environments are designed to be highly adaptable to support rapid
deployment of such customised services. Thus, management also needs to be dynamic and flexible

to deal with the evolution of the systems being managed.

The requirements for management systems identified above, can be facilitated with policy-based
management approaches where the support for distribution, automation and dynamic adaptation of
the behaviour of the managed system is achieved by using policies. The main benefits from using
policy are improved scalability and flexibility for the management system. Scalability is improved
by uniformly applying the same policy to large sets of devices and objects, while flexibility is
achieved by separating the policy from the implementation of the managed system. Policy can be
changed dynamically, thus changing the behaviour and strategy of a system, without modifying its
implementation or interrupting its operation. Policy-based management is largely supported by
standards organisations such as the Internet Engineering Task Force (IETF) and the Distributed

Management Task Force (DMTF), and most network equipment vendors.

As enterprises are increasingly leveraging Internet technologies to adopt e-business practices, they
expose internal resources to customers, and require that enterprise-wide authorisation policies be
easily established and implemented. Authorisations must be enforced both at the application level
and in network elements, and must be explicit, i.e. authorisation policies must be precisely and
unambiguously stated to define the set of acceptable requests. Various techniques have emerged for
programming network elements to support adaptive services, such as active networks, mobile
agents, and management by delegation. While these approaches support the programming of new
functionality into network elements and host devices, they increase the security concerns regarding
access to network resources and services. Authorisation policies must therefore specify which
users are permitted to program network elements, which services users are permitted to access and

under what circumstances.

A plethora of mechanisms are used within the same enterprise computing systems to provide
security at different levels: application level (e.g. databases), object-middleware level, operating-

system level or network level. In addition, access control is typically distributed across many

www.manaraa.com

16 Chapter 1. Introduction

heterogeneous components which enforce authorisation policies for a variety of target objects. The
proliferation of non-integrated security mechanisms and products, each with independent
administration and application development interfaces, leads to separate authorisation policy
implementations within each individual application and system. This makes it difficult to support
global security policies in accordance with enterprise access control goals. It should be possible to
provide consistent security across the distributed object system and associated legacy systems.
Policy must be separated from the security mechanisms that enforce access control, in order to

enable the specification and integrated administration of global policies.

Delegation is often used in access control systems to cater for temporary transfer of access rights
between users or agents. Secure delegation of administrative functions is common in organisational
systems where security management is delegated on a hierarchical basis. A user's ability to delegate
access rights must be tightly controlled by security policies especially in those systems which allow

cascaded delegation of access rights.

Management and security of distributed systems are interdependent and each needs the services of
the other [Hyland et al. 1998]. Catering for security management involves not only specification
and deployment of access control policies, but also providing support for user registration, logging
and auditing of access to critical resources, and responding to security violations (e.g. repeated
attempts to delete a sensitive file). Thus, security specifications must also cover obligation policies
to assign responsibility for performing actions related to security management and enforcement. In
addition, the policy system must be self-managed so that policies can be specified about who is

authorised to modify other policies.

Managing security in heterogeneous, distributed environments can become expensive and error-
prone; it requires security administration to be distributed to multiple policy administrators, which
makes it difficult to provide consistent security policies across the entire system. It is thus
necessary to analyse security policies for conflicts and inconsistencies, which may lead the system
to insecure states. Analysis of policy specification is also important in order to ensure that
enterprise security goals are met. In large-scale systems with large numbers of both users and
policies, it must be possible to analyse the policies in order to check for the existence of policies
that implement the high-level security goals of the organisation. This involves subject and target
review of policy to identify which policies apply to certain subjects or target objects, and assumes
two things: (i) a policy notation that can be analysed, and (ii) centralised access to deployed

policies.

Security administration in large intra- and inter-enterprise systems requires management of access
controls based on roles relating permissions to organisational positions or groups rather than

individual identities. Role-based administration has proven to be a very important technique in

www.manaraa.com

Section 1.2. Policy Framework Requirements 17

reducing administrative costs. In addition, the large and constantly changing population of
managed objects in such systems requires policies to be specified in terms of groups of objects
rather than individual ones. Policy specification for individual objects does not scale for large

enterprise systems.

Finally, management, even when policy-based, is an evolutionary process. Policy-based resource
allocation, the association between policy and the devices/entities on which it must be implemented
and even the policies themselves are subject to frequent reviews and changes. Decentralised
administration of large and complex organisational structures is both difficult and error prone and
administrators must be isolated from the details of the underlying implementations and policy
representations. This can be achieved with tools that allow for integrated administration and hide

the heterogeneity of devices and the complexity of policy deployment.

In this thesis we define policy as: A4 persistent declarative specification, derived from management
goals, of a rule defining choices in behaviour of a system, based on the definition of policy in

[Moffett et al. 1993; Sloman 1994b]. This definition identifies various properties of policy:

* Persistent in the sense that a one-off command to perform an action is not a policy. In
addition, policies are relatively static compared to the state of the managed system.

* Declarative in the sense that policies define choices in behaviour in terms of the conditions
under which predefined operations or actions can be invoked rather than changing the
functionality of the actual operations themselves, i.e. they specify what behaviour is desired,
not how the behaviour will be achieved and maintained.

e Derived from management goals because we view policies as being derived from business
goals, service level agreements or trust relationships. We sometimes refer to management

goals as high-level or abstract policies in this thesis.

1.2 Policy Framework Requirements

In this section we identify the requirements that need to be addressed when defining a policy
management framework. The main requirement is the design of a language that can be used to
specify both security and management policies. However, the framework must also address the
issue of policy deployment for a variety of application areas and on a variety of platforms and
systems. The requirements identified in this section are derived from the experience gained within
the policy group at Imperial College over the past 10 years, and from the survey of the literature on

policy-based management.

www.manaraa.com

18 Chapter 1. Introduction

1.2.1 Policy Specification Language

A lot of work within the greater scope of distributed systems management has already resulted in
architectures and technologies that provide the basic infrastructure and tools required to implement
policy-based management solutions. This includes mechanisms, protocols, models, management
paradigms and proprietary solutions to many of the problems involved in this area. The need to
integrate the various solutions to enable the engineering of integrated management systems has
already been acknowledged [Hegering et al. 1999] and, in recent years, emphasis was placed on
policy specification [Stone et al. 2001] and information models for managed objects. We believe
that a common high-level language for different applications of policy-based management related
to both security and network management is important. The following is a list of requirements that

the language specification must support:

< Authorisation policies to explicitly specify the set of acceptable requests in the system. Any
request made by a subject can be defined in terms of an action on an object, so authorisation
policies must define the relationship between subjects and actions on target objects.
Authorisation policy specification must also allow for both positive and negative
authorisations in order to conveniently support exceptions [Samarati et al. 2000]. Negative
authorisations are supported by many security platforms (e.g. Windows NT/2000) and can
be used to temporarily remove access rights from subjects.

< Implementation-independent authorisation policies that can map onto various access control
mechanisms for firewalls, operating systems, object-middleware, databases and
programming languages such as Java.

» Delegation policy specification to cater for temporary transfer of access rights to agents
acting on behalf of a client. Delegation policies enable decentralised privilege
administration permitted within discretionary access control models to allow users to
delegate their privileges to others.

e Constraint-based authorisations including temporal authorisation [Bertino et al. 1998] as
well as restricting the validity of the policy based on the state of the system, or the state of
the policy targets.

e Constraints on a set of policies in order to restrict the policies that can be specified in the
system under certain conditions, prioritise policies, and model well-known constraints such
as separation of duty, and user-role/role-permission assignment constraints.

» Event-condition-action rules to define the management actions that need to be performed
periodically, or when triggered by events. These policies can be used to specify security
management actions, quality of service rules, or in a more general context as a constrained

form of programming network elements and end-user agents.

www.manaraa.com

Section 1.2. Policy Framework Requirements 19

e Structuring techniques to facilitate the specification of policies relating to large systems
with millions of objects. This requires the ability to apply policies to large collections of
objects rather than specifying policy for individual objects. It should be possible to specify
policies for heterogeneous target objects grouped together based on arbitrary application-
specific criteria.

e Composite policies, which allow the basic security and management policies relating to
roles, organisational units or specific applications to be grouped together. Composite
policies are essential to cater for the complexity of policy administration in large enterprise
information systems.

* Reuse and parameterisation of policy specifications.

« Analysis of policies for conflicts and inconsistencies in the specification. This also includes
the ability to determine which policies apply to an object or what objects a particular policy
applies to. Declarative languages make such analysis easier.

e Self-management by treating policies as objects in order to enable the specification of
policies whose targets are other policies. This provides policy-based control over access to
policies as well as automated activation and deactivation of policy objects based on events,

to support security of the managed system and self-adaptation.

In addition to the above requirements, the design of the policy language must also address:

» Extensibility to cater for new types of policy that may arise in the future.
< Ease of use; the language must be comprehensible and easy to use by policy users. If this is

not the case, then errors are inevitable.

1.2.2 Policy Deployment

Architectures for enforcing policies are moving towards strongly distributed paradigms, using
technologies such as mobile code, distributed objects, intelligent agents or programmable networks.
Borrowing the terminology from [Martin-Flatin et al. 1999], those paradigms in which the
management task is delegated to distributed entities which actively participate in the management
decision making, are called strongly distributed. These entities interpret and enforce policies, and
their behaviour is dynamically changed by those policies. In contrast, weakly distributed are those
paradigms in which the management decision-making is concentrated in a few managers, with
distributed agents or entities acting merely as data collectors. An example is the OSI management
framework [ISO/IEC 1989; Langsford 1994]. In this thesis we aim to design a strongly distributed
management architecture based on a generic policy language which satisfies the requirements
discussed in the previous section. We identify the following requirements for policy deployment

and enforcement:

www.manaraa.com

20 Chapter 1. Introduction

e Support for compilation of policies into different runtime representations based on the
requirements of the underlying services or applications, and storage in distributed directory
services. Centralised access to policies stored in distributed repositories must be possible in
order to allow for analysis of deployed policies.

¢ Flexible and distributed enforcement of access control policies on a variety of security
platforms and mechanisms. The need for application developers to code customised security
into each application must be avoided, and integration of existing and new applications with
the access control enforcement mechanisms must be possible with minimum overhead.

e Automated distribution of policies to their enforcement components and dynamic adaptation
of the management system to changes in the stored policies and the managed objects to
which the policies apply. This must include the ability to easily enable and disable deployed
policies, or retract them from their enforcement components.

» Support for role-based management using the existing access control mechanisms. This
includes the assignment of subjects to roles, the automated enforcement of role policies for
each subject assigned to a role, and the selective activation and deactivation of assigned
roles to subjects.

« Implementation of tools to enable administrators to manage policy for large-scale systems.
These tools hide low-level implementation details, support the specification, deployment

and coordination of policies within the system, and allow easy per user/per device review of

policy.

1.3 Contribution

In this thesis we define a framework for the specification and deployment of policies to support
security and general management of enterprise-wide distributed systems. The main contribution of
this thesis is a generic policy specification language and the design of a strongly-distributed
architecture for deploying policies. We propose a language for specifying both security and
management policies, which is both declarative and simple to use for policy administrators. The
language builds on experience gained in policy-based management at Imperial College over the
past 10 years [Sloman et al. 1994a; Sloman 1994b; Marriott 1997; Lupu et al. 1997b; Lupu 1998].
We have refined and elaborated the concepts resulting from this experience into an integrated
policy-based management framework, which presents a significant engineering challenge and

constitutes one of the main contributions of this thesis.

The policy language is designed by closely following the requirements identified in Section 1.2,

and its novel aspects lie in the fact that it includes support for a wide range of policy requirements,

www.manaraa.com

Section 1.3. Contribution 21

with particular emphasis on flexibility, scalability, and extensibility. Existing work either
concentrates on specific application areas or is based on specification methodologies which do not
scale or provide the needed flexibility. The proposed language borrows the well-documented
typing and inheritance features from object-oriented languages to provide for reusability. Policy
types can be instantiated multiple times allowing parameterisation of policies with application or
system specific parameters. In addition, types can be extended by specialisation to an infinite
depth, thus permitting scalability, while preserving a structured specification. The language also
introduces flexibility since different policy instances can be created to cater for special conditions.
For example, similar service control policies may be applied on servers at different sites of an
organisation at different times. These policies can be instantiated from a common policy type as
both the servers to which the policies apply and the time interval during which the policies apply

can be specified as instantiation parameters.

The language includes policies which range from single basic rules for access control and event-
triggered management adaptation, to organisational policies used to structure responsibility based
on the organisational models. Roles, relationships, and their configurations into management
structures enable the specification of policies for large enterprise-wide systems. This can be used to
reflect the management responsibilities and access rights of users based on their roles in the
organisation, and the configurations of these roles in departments, divisions and other
organisational structures. Issues such as delegation policies, information filtering access controls,
and specification of application specific constraints (e.g. separation of duty) are also addressed in

the language.

The deployment architecture is also novel in that it allows the automated distribution of policies to
their enforcement components avoiding the need to manually manage the associations between the
policies and the entities that implement them. This is facilitated by the fact that policies explicitly
identify their subjects and targets in terms of domains of actual objects in the system. Domains are
a unit of management similar to file directories in operating systems, and provide hierarchical
structuring of objects. The use of domains enables a consistent state of deployment to be
maintained, although the membership of objects in domains can change. The deployment
architecture addresses the issue of compiling policies into a variety of underlying specifications
(i.e. for access control enforcement) to support uniform implementation of policies across
heterogeneous systems, storage of policies in distributed repositories, and enforcement of policies

specified in roles.

The proposed policy framework is directly suitable for security management, which is the focus of
this thesis, but can also be applied to other areas of management e.g. quality of service, storage, and

configuration management. Our enforcement architecture is meant to be used as a reference model

www.manaraa.com

22 Chapter 1. Introduction

and as a guide to management using the proposed language. It is not restricted to specific
communication protocols, mechanisms or information models, and it is based on simple ideas that

can be implemented using existing technologies and protocols.

As proof of concept, we describe a prototype implementation of the enforcement architecture,
which covers subject-based management policies and roles. The implementation includes a policy
administration toolkit that supports the specification and management of policies. It comprises an
Integrated Development Environment (IDE) with a policy compiler, as well as tools for managing

policies and roles at runtime.

1.4 Thesis Structure

In Chapter 2 we provide a survey of related work concentrating on policy specification. We give an
account of security management approaches, including models and languages. We then concentrate
on the area of policy-based management and discuss the advances which are related to the ideas
presented in this thesis. We conclude with an account of the background work on which this thesis

is based.

Chapters 3 and 4 present the proposed policy specification language, its syntax and usage. In
Chapter 3 we describe the basic policy features of the language which include: authorisation and
delegation policies for access control as well as obligation and refrain policies for subject-based
management specifications. The features of the language that enable composition of the basic
policies for reusability or to allow for role-based management are described in Chapter 4. Chapter 4
includes the description of meta-policies, which are used to specify application specific constraints

that cannot be specified in individual policies.

In Chapter 5 we present an operational semantics for the policy language using a term-rewrite
system. The semantics provide an unambiguous description for the execution of the various

elements of the policy specification and can enable further work in policy analysis.

Chapter 6 is devoted to the description of the policy compiler, its design and implementation. We
present our approach to generating Java objects from policy specifications and supporting multiple
back-ends for mapping policies to a variety of underlying representations. We also describe tool

support for specifying policies.

In Chapter 7 we describe the enforcement architecture for the deployment of policies. The
architecture includes the storage of policies, their distribution and their enforcement by automated

distributed entities. We also provide an overview of the prototype implementation. This comprises

www.manaraa.com

Section 1.4. Thesis Structure 23

the enforcement of obligation and refrain policies, the enforcement of composite policies such as
roles, and a policy management toolkit.

In Chapter 8 we give a critical evaluation of the work and in Chapter 9 we conclude and suggest
directions for future work.

www.manaraa.com

Chapter 2
Background and Related Work

In this chapter we give an account of related work in the area of policy specification and
deployment, followed by a description of those concepts on which the work presented in this thesis
is based. We choose to describe the related work on policy-based management at Imperial College
separately from other related work, because this forms the basis for the policy framework presented
in this thesis. We start by providing an overview of security policy models, and follow this with a
description of related work in the areas of policy specification, which is the focus of our survey,
policy management architectures, and tool support. Figure 2.1 shows how these areas are related in
a layered approach to building policy-based management systems. Note that a lot of the related

work discussed in this chapter was carried out concurrently with the work presented in this thesis.

Tool support +———— How to make policy-based management practical

Policy specification approaches | +———— How to specify policy

Policy management architectures | 7=~~~ How to deploy policy

Figure 2.1 Policy survey areas

2.1 Security Policy Overview

The definitions most frequently proposed for computer security identify three primary objectives
for security: confidentiality (sometimes called secrecy) related to the disclosure of information,
integrity related to the modification of information, and availability related to the denial of access
to information. To achieve these objectives three mutually supportive technologies are used:
Authentication, Access Control and Audit. Access control is concerned with limiting the activity of
legitimate users who have been successfully authenticated, and is the process of ensuring that every
access to a system and its resources is controlled and that only those accesses that are authorised
can take place. There are three basic components to an access control system: the subjects, the
targets and the rules which specify the ways in which the subjects can access the targets. The set of
high-level rules according to which access control must be regulated are traditionally called access
control policy [Samarati et al. 2000]. The study of access control has identified a number of useful

access control models, which provide a formal representation of security policies and allow the

24

www.manaraa.com

Section 2.1. Security Policy Overview 25

proof of properties about an access control system. Note that the use of the term policy is often
used in the literature to refer to both high-level security policies as defined above, and actual

authorisation rules to be enforced.

2.1.1 Access Control Models

Access control policies have been traditionally divided into discretionary and mandatory policies.
Discretionary policies are concerned with the specification of authorisation rules to govern the
access of users to the information, whereas mandatory policies are mostly concerned with
controlling information flow between the objects of a system. Information flow policies are often
described as a separate type of policy, and are directly related to the issue of data confidentiality.
Recently role-based access control policies are attracting increasing attention, particularly in
commercial applications, and are often seen as an alternative to traditional discretionary and
mandatory access control. Figure 2.2 shows a relationship between the four generic models
mentioned. We view role-based policies as more closely applying the principles of discretionary
access control. On the other hand information flow policies are more closely related to mandatory

access control.

Role-based
access
control
policies

Discretionary access
control policies

Information
flow
policies

Mandatory access
control policies

Figure 2.2 Classification of access control models

Discretionary Policies

Discretionary Access Control (DAC) policies restrict access to objects based on the identity of the
subjects and/or groups to which they belong. With DAC, access control is at the discretion of the
user, and the controls are discretionary in the sense that a subject with certain access permissions
can pass those permissions on to any other subject. The notion of delegation of access rights is thus
an important part of any system supporting DAC. Basic definitions of DAC policies use the access
matrix model as a framework for reasoning about the permitted accesses. In the access matrix
model the state of the system is defined by a triple (S,0,A), where S is the set of subjects, O is the
set of objects and A is the access matrix where rows correspond to subjects, columns correspond to

objects and entry A[s,0] reports the privileges of s on o.

Although the access matrix model remains the main mechanism for reasoning about DAC, several
extensions have been proposed. Abadi at al. [Abadi et al. 1993] present a calculus for access
control, which formalises access control lists and theories for deciding whether requests should be

granted or not. The calculus is based on the notion of principals as the sources of requests, and

www.manaraa.com

26 Chapter 2. Background and Related Work

includes both simple and composite principals whereby principals can be defined in potentially
nested groups. They view delegation as a basic primitive and define it as the ability of a principal A
to give to another principal B the authority to act on A’s behalf. The specification of rules to define
under which the conditions delegation of access rights can take place is often neglected in security
policy specification languages; the proposed calculus is not able to support temporal constraints on
authorisations or delegations. Bertino et al. [Bertino et al. 1998] propose a formal model for
extending authorisations with temporal constraints. A temporal expression is associated with an
authorisation to specify periodic authorisations and restrict their validity to specific time periods. In
addition, the model includes derivation rules to enable the runtime derivation of new authorisations
based on the presence or absence of other authorisations in specific periods of time. Other work on
discretionary policies [Samarati et al. 2000] acknowledges the need to attach more general
conditions to authorisation rules to specify their validity based on system state, the state of objects
on which the authorisation is defined or on accesses previously executed (history-based
authorisations). Finally, many researchers identify the need for both positive and negative
authorisations as a way to conveniently specify exceptions in authorisation rules [Samarati et al.
2000]. Negative authorisations specify accesses that should not be granted, and can be used to
temporarily remove access rights from subjects to which positive authorisations are applied. The
combined use of both positive and negative policies brings to the problem of potential
inconsistencies when both a positive and a negative policy apply to the same access [Lupu et al.
1999].

Mandatory Policies

Mandatory access control (MAC) policies enforce access control on the basis of fixed regulations
mandated by a central authority. Mandatory security policies are typified by the Bell-LaPadula
lattice-based model. Lattice-based models were defined to deal with the issue of data
confidentiality, and concentrate on restricting information flow in computer systems. This is
achieved by assigning a security classification to each subject (an active entity that can execute
actions) and each object (a passive entity storing information) in the system. Subjects and objects
form a lattice based on their classification, which is used to enforce some fixed mandatory policies
regarding the actions that subjects can execute on objects. The Bell-LaPadula model, which

inspired most of the lattice-based access control models, is summarised below.

The Bell-LaPadula identifies objects (O) and subjects (S) with: S O O, and defines the following

operations that subjects can perform on objects:

e Execute (no observation, no alteration)
e Read (observation, no alteration)

e Append (no observation, alteration)

www.manaraa.com

Section 2.1. Security Policy Overview 27

« Write (observation, alteration)

The model defines a set of totally ordered classifications C (Top-secret, Secret, Classified, Un-
classified), and a set of categories K, partially ordered by set inclusion (e.g. NATO, NUCLEAR
etc). A level is defined as: L = C x K, i.e. each level has two components, a classification from
the set C and a subset of the set of categories K. ThusL = (c, k) where ¢ O C and k is a subset
of K, and levels are related in an ordered relation as specified below; we use the 00 symbol to

denote the relation between levels:
L=(c, k) OL =(c¢', k') > c <c¢ and k OKk'".

Each object o is assigned exactly one level, L(0) called the classification of the object, and each
subject s is assigned two levels: L(s) and maxL(s). maxL(s) is called the clearance of the subject
and it is a static level; it is the maximum level for the subject s. L(s) is the current security level of
the subject. Note that it must be true that: L(s) O naxL(s). The Bell-LaPadula defines the
following two properties, which constitute the mandatory access rules of the model and must be

observed:

Simple Security Property:
e A subject can have read access only to objects at or below its clearance, i.e. For a subject s

to be able to observe object o the following must be true: L(0) O maxL(s).

*-Property (Star-Property):

« For subject s to be able to read object o the following must be true: L(o) O L(s).
« For subject s to be able to write object o the following must be true: L(0) = L(s).

* For subject s to be able to append to object o the following must be true: L(s) 0O L(o).

The conceptual framework of the Bell-LaPadula model forms the basis of other derived models one
of which is the Biba model (see description in [Anderson et al. 2001]). The Biba model uses similar

controls as those used in the Bell-LaPadula model for providing integrity of data.

Non-Discretionary Policies

Administrative policies [Sandhu et al. 1994] determine who is authorised to modify the allowed
access rights and exist only within discretionary policies. In mandatory policies the access control
is determined entirely on the basis of the security classification of subjects and objects.
Administrative policies can be divided into: (i) Centralised where a single authoriser (or group) is
allowed to grant and revoke authorisations to the users. (ii) Hierarchical where a central authoriser
is responsible for assigning administrative responsibilities to other administrators. The

administrators can then grant and revoke access authorisations to the users of the system according

www.manaraa.com

28 Chapter 2. Background and Related Work

to the organization chart. (iii) Cooperative where special authorisations on given resources cannot
be granted by a single authoriser but needs cooperation of several authorisers. (iv) Ownership
where a user is considered the owner of the objects he/she creates. The owner can grant and revoke
access rights for other users to that object, and (v) Decentralised where the owner or administrator

of an object can also grant other users the privilege of administering authorisations on the object.

The above discussion gives rise to another form of access control called Non-Discretionary Access
Control (NDAC) [Abrams 1993] in addition to the two traditional classifications of discretionary
and mandatory. NDAC identifies the situations in which authority is vested in some users, but there
are controls on delegation and propagation of authority. As Abrams graphically explains, if one
envisions an authority tree routed in the security administrator then mandatory is the case in which
the tree has no branches, discretionary is the case in which the branches extend to every user, and
non-discretionary is the case in which there are branches that do not extend to every user. Any
global and persistent access control policy relying on access control decision information not
directly controlled by the security administrator is non-discretionary, and in NDAC, policy for

delegating authority must be explicit.

Another type of mixing DAC and MAC is work towards enriching discretionary policies with
military restrictions to achieve control of information flow in commercial applications such as
database systems [Samarati et al. 1998]. Discretionary policies do not enforce any control on the
flow of information once this information is acquired by a process, making it possible for processes
to leak information to users not allowed to read it. Myers et al. [Myers et al. 1997] extend the idea
of multi-level lattice-based security policies with mechanisms to allow owners of information to

declassify that information themselves.

Role-based Policies

The idea behind role-based specification of policies has existed for some time, and approaches
related to the collection of privileges for assigning authorisation in database systems date back to
the early 1990s with the introduction of named protection domains as a way of grouping the
policies needed to accomplish a specific task [Baldwin 1990]. However, it was only until recently
that Role-Based Access Control (RBAC) has been acknowledged as a separate model [Gligor
1995; Sandhu et al. 1996]. Role-based models regulate the access of users to the information on the
basis of the activities the users execute in the system. In RBAC a role is defined as the set of access
rights associated with a particular position within an organisation, or a particular working activity.
RBAC models simplify authorisation management by including mechanisms for assigning access
rights and users to roles; instead of specifying access rights in terms of users, permissions and users
are assigned to roles, and a user assumes the permissions associated with the roles that user is

assigned to.

www.manaraa.com

Section 2.1. Security Policy Overview 29

Sandhu et al. [Sandhu et al. 1996] have specified four conceptual RBAC models in an effort to
standardise RBAC. We discuss these models in order to provide an overview of the features
supported by RBAC implementations. RBAC, contains users, roles, permissions and sessions.
Permissions are attached to roles and users can be assigned to roles to assume those permissions. A
user can establish a session to activate a subset of the roles to which the user is assigned. RBAC,
includes RBAC, and introduces role hierarchies [Sandhu 1998]. Hierarchies are a natural means
for structuring roles to reflect an organisation's lines of authority and responsibility, and are
specified using inheritance between roles. Role inheritance enables reuse of permissions by
allowing roles to be specified as junior from which senior roles can inherit permissions. For
example a member of the research-staff role in an academic institution inherits the permissions of
the employee role which is considered to be junior to that of a research staff member. Although the
propagation of permissions along role hierarchies further simplifies administration by reducing
considerably the number of permissions in the system, it is not always desirable. Organisational
hierarchies do not always correspond to permission-inheritance hierarchies; the employee role may
have permissions which the research-staff role should not inherit because they are specific to the
employee role. Such situations lead to exceptions and complicate the specification of role
hierarchies [Moffett 1998].

RBAC, includes RBAC, and introduces constraints to restrict the assignment of users or
permissions to roles, or the activation of roles in sessions. Constraints are used to specify
application-depended conditions, and satisfy well-defined control principles such as the principles
of least-privilege and separation of duties. Finally, RBAC; combines both RBAC; and RBAC,, and
provides both role hierarchies and constraints. In recent work Sandhu et al. [Sandhu et al. 2000]
propose an updated set of RBAC models in an effort to formalise RBAC. The models are called:
flat RBAC, hierarchical RBAC, constrained RBAC and symmetrical RBAC, and correspond to the
RBAC, — RBAC; models. Although the updated models define more precisely the basic features
that must be implemented by an RBAC system, their description remains informal. A number of
variations of RBAC models have been developed, and several proposals have been presented to
extend the model with the notion of relationships between the roles [Barkley et al. 1999], as well as
with the idea of a team, to allow for team-based access control where a set of related roles

belonging to a team are activated simultaneously [Thomas 1997].

Other Security Models

Over the years other, often more sophisticated security models have been proposed to formalise
security policies required for commercial applications. The most well known is the Clark-Wilson
model [Clark et al. 1987], which attempts to present in a formal, abstract way commercial data

processing practices. Its main goal is to ensure the integrity of an organisation’s accounting system

www.manaraa.com

30 Chapter 2. Background and Related Work

and to improve its robustness against insider fraud. The Clark-Wilson model recommends the
enforcement of two main principles, namely the principle of well-formed transactions where data
manipulation can occur only in constrained ways that preserve and ensure the integrity of data, and
the principle of separation of duty. The latter reduces the possibility of fraud or damaging errors by
partitioning the tasks and associated privileges so cooperation of multiple users is required to
complete sensitive tasks. Authorised users are assigned privileges which do not lead to execution of
conflicting tasks. This principle has since been adopted as an important constraint in security

systems.

Other models include a security policy model that specifies clear and concise access rules for
clinical information systems [Anderson 1996]. This model is based on access control lists and his
authors claim it can express Bell-LaPadula and other lattice-based models. Finally the Chinese-wall
policy (see description in [Anderson et al. 2001]) was developed as a formal model of a security
policy applicable to financial information systems, to prevent information flows which cause
conflict of interest for individual consultants. The basis of the model is that people are only allowed
to access information which is not held to conflict with any other information that they already
possess. The model attempts to balance commercial discretion with mandatory controls, and is
based on a hierarchical organisation of data. It thus falls in the category of lattice-based access

control models.

Access Control Policy Specification Trends

Recent proposals include a trend towards languages able to express different access control policies
in a single framework in order to provide a common mechanism able to enforce multiple policies.
This enables uniform specification and composition of access control policies across administrative
domains and for a number of different platforms. We give an account of work in this area in
Sections 2.2.1 and 2.2.2.

Another direction is certificate-based access control aimed at specifying trust policies for access to
resources from un-trusted sources e.g. over the Internet. Trust has long been tied to authorisation:
“Access control consists in deciding whether the agent that makes a statement is trusted on this
statement; for example, a user may be trusted (hence obeyed) when he says that his files should be
deleted.” [Abadi et al. 1993]. However, its only very recently that work on certificate-based

authorisation has been intensified, as part of trust management systems (see Section 2.2.3).

2.1.2 Security Management

Security models and access control specification have been major research topics for a long time,

but relatively little work exists to support the specification for operational network security

www.manaraa.com

Section 2.1. Security Policy Overview 31

management. Traditionally, security management has been considered a sub-function of network
management, and has been identified as one of the five functional areas of the OSI management
framework . As defined in the OSI management framework, security management is concerned not
with the actual provision and use of encryption or authentication techniques themselves but rather
with their management, including reports concerning attempts to breach system security. Two
important aspects are identified: (i) managing the security environment of a network including
detection of security violations and maintaining security audits, and (ii) performing the network

management task in a secure way [Langsford 1994].

Sloman [Sloman et al. 1993], defines security management as the support for specification of
authorisation policy, translation of this policy into information which can be used by security
mechanisms to control access, management of key distribution, monitoring and logging of security
activities. In [Hyland et al. 1998] they define security management as the real-time monitoring and
control of active security applications that implement one or more security services. This manages
risk by ensuring that the security measures are operational, in balance with current conditions, and
compliant with the security policy. Janson [Janson 1994] notes that the main objective of security
management is to create, delete, activate, suspend, query, update or otherwise maintain the status of
managed security objects through continuous gathering or distribution of information about
ongoing security-relevant activities. The define access-control management as a sub-area of
security management, which is concerned with the maintenance of privilege and control attribute
lists, as well as their distribution or centralisation across the network. Finally, the IETF defines
security policies as those policies dealing with the verification of client identities, permitting or
denying access to resources, selecting and applying appropriate authentication mechanisms, and

performing accounting and auditing of resources [Moore et al. 2001].

The active aspects of security policy specification, identified by all of the definitions of security
management reported above, include the stipulation of actions to be performed when events such as
security violations are detected. These aspects can be specified using the notion of event-condition-
action rules proposed by some of the approaches to management policy specification (see Section
2.2.4). Such rules are often called obligations and are sometimes bound to authorisation policies.
Minsky et al. [Minsky et al. 1985] identify the use of obligation in conjunction with authorisation
policies, where the execution of actions permitted by authorisations requires (i.e. triggers) the
execution of an obligation to perform certain actions. This type of policy is considered and can be

expressed by some of the approaches that we examine in the next section.

www.manaraa.com

32 Chapter 2. Background and Related Work

2.2 Policy Specification Approaches

In our definition of policy (see Section 1.1), we have identified management goals from which
policies are derived and termed those as high-level policies. Throughout the literature one can find
different opinions as to the number of levels in a policy specification. This is sometimes called a
policy hierarchy [Moffett et al. 1993; Weis 1994a], and represents different views on policies,
relationships between policies at different levels of this hierarchy, or abstractions of policies for the
purpose of refining high-level management goals into low-level policy rules whose enforcement
can be fully automated. The number of levels can be arbitrary but we accept three levels of policy

specification:

* High-level abstract policies (also referred to as management goals), which can be business
goals, service level agreements, trust relationships or even natural language statements.
High-level abstract policies are not enforceable and their realisation involves refining them
into one of the other two policy levels, which is outside the scope of this thesis.

e Specification-level policies, sometimes referred to as network-level or business-level
policies (or even high-level policies by some researchers). These are the policies specified
by a human administrator to provide abstractions for low-level policies but in a precise
format. These policies relate to specific services, or objects and their interpretation can be
automated.

* Low-level policies or configurations such as device configurations, security mechanism
configurations (e.g. access control entries, firewall rules), directory schema entries and so
on. The line separating low-level policies and device configuration is sometimes not clear,
and directly specifying policies at this level is often a bottleneck to both scalability and

interoperability.

Figure 2.3 summarises the approaches used for specification-level policies, indicated in order of
ease of specification and flexibility from top to bottom. We divide these approaches into three main
categories: policy specification languages, rule-based specifications, and formal logic languages.
From a human input standpoint, the best way to specify policies is using a policy language because
it provides considerable flexibility compared to the other approaches. However, the use of a generic
high-level language compromises the ability to analyse policy specifications, a process that can be
made considerably simpler with the design of declarative languages. In the rule-based approach
policies are specified as sequences of rules of the form: if condition then action, and are mostly
applied to quality of service management in IP networks. Finally, logic-based approaches are
driven by the need to analyse the policy specification, but generally fail to directly map to an
implementation and are not easily interpreted by humans. Formal logic is mostly used in the

specification of security policies.

www.manaraa.com

Section 2.2. Policy Specification Approaches 33

Policy levels
Abstract/High-level policies Policy specification approaches
y . | [Policy specification language j

S S i Ease of specification
| 5 (Rule-based approach] i Flexibility

i Higher abstraction
| Difficulty in analysis

Specification-level policies

C Formal logic-based approaches j

[[[' [T [T [
[Low-level policies / configurations |
| IS Ry IS S [SN R S

Figure 2.3 Policy levels and specification approaches

There are many ways to divide the discussion on the various policy specification approaches, e.g.
based on the granularity of specification, based on the functionality, or based on the application
domain. We start by presenting approaches used to specify security polices, including logic-based
languages, high-level languages and work on specification of trust. We then present work in the
area of management policy specification, followed by approaches specific to network management

policies for quality of service and traffic routing.

2.2.1 Logic-Based Authorisation Languages

Formal logic-based approaches have been used to specify security policies, but are generally not
intuitive and do not easily map onto implementation mechanisms. They assume a strong
mathematical background, which can make them difficult to use and understand. The
authorisation specification language (ASL) [Jajodia et al. 1997] is an example of a formal logic
language for specifying access control policies. Although it provides support for role-based access
control, the language does not scale well to large systems because there is no way of grouping rules
into structures for reusability. Authorisation rules identify the actions authorised for specific users,
groups or roles, but cannot be composed into roles to provide for reusability i.e. there is no explicit
mechanism for assigning authorisations to roles; instead this is specified as part of the condition of
authorisation rules. The following is an example of an authorisation rule in ASL, which states that

all subjects belonging to group Employees but not to Soft-Developers are authorised to read filel.

cando(filel, s, +read) ~ in(s, Enployees) & -in(s, Soft-Devel opers)

The cando predicate can also be used to specify negative authorisations; the sign in front of the
action in the cando predicate indicates the modality of the authorisation. However, there is no
explicit specification of delegation and no way of specifying authorisation rules for groups of target
objects that are not related by type. A dercando predicate is defined in the language to specify
derived authorisations based on the existence or absence of cando rules (i.e. other authorisations in
the system). In addition, two predicates do and done, can be used to specify history-dependent
authorisations based on actions previously executed by a subject. The language includes a form of

meta-policies called integrity rules to specify application-dependent conditions that limit the range

www.manaraa.com

34 Chapter 2. Background and Related Work

of acceptable access control policies. In a recent paper [Jajodia et al. 2000] the language has been
extended with predicates used to evaluate hierarchical or other relationships between the elements
of a system such as the membership of users in groups, inclusion relationships between objects or

supervision relationship between users.

The type of logic used in ASL is called stratified clause form logic. Barker [Barker 2000] adopts a
similar approach to express a range of access control policies using stratified clause form logic,
with emphasis on RBAC policies. According to the author, this form of logic is appropriate for the
specification of access control policies mostly due to its simple high-level declarative nature. The
function-free normal clause logic adopted by Barker, defines a normal clause as an expression of
the following form: H ~ L1,L2,..., Lm (m = 0). The head of the clause, H, is an atom and
L1, L2,..., Lmis a conjunction of literals that constitutes the body of the clause. If the conjunction
of literals L1, L2, .. ., Lmis true (proved) then H is true (proved). A literal is an atomic formula or
its negation and a normal theory is defined as a finite set of normal clauses. A stratified theory
extends a normal theory by eliminating some forms of “recursion-via-negation”, which makes the
computation of the theory more efficient. The negation of literals is used to specify negative

permissions

In [Barker et al. 2001] they show how policies specified in stratified logic can be automatically
translated into a subset of SQL to protect a relational database from unauthorised read and update

requests. The following example from [Barker et al. 2001] demonstrates their approach:

permitted(U P,O ~ ura(U Rl),activate(U,Rl),senior-to(RLl, R2),rpa(R2, P, 0O

The above clause specifies that user U has the permission P on object O if U is assigned to a role
R1, Uisactive in R/, and R/ inherits the P permission on O from R2. This expression assumes that
the following predicates have been defined: activate(U, R) to denote that U is active in R, ura(U,R)
to assign user U to role R, rpa(R,P,0) to assign permission P on object O to role R, and senior-
to(R1,R2) to denote that role R/ is senior to R2.

Ortalo [Ortalo 1998] describes a language to express security policies in information systems based
on the logic of permissions and obligations, a type of modal logic called deontic logic. Standard
deontic logic is static instead of dynamic, and centres on impersonal statements instead of personal,
we see the specification of policies as a relationship between explicitly stated subjects and targets
instead. In his approach he accepts the axiom Pp = -0O-~p ("permitted p is equivalent to not p being
not obliged") as a suitable definition of permission. This axiom is not appropriate for the modelling
of obligation and authorisation policies because the two need to be separated. An obligation policy
requires a relevant authorisation policy to permit the actions defined in the obligation, but having

an obligation for an action does not imply the permission to execute the action.

www.manaraa.com

Section 2.2. Policy Specification Approaches 35

The role definition language (RDL) [Hayton et al. 1998] is a formal language based on Horn
clauses defined within the Oasis architecture for secure, interworking services defined at
Cambridge University. RDL is based on sets of rules that indicate the conditions under which a
client may obtain a name or role, where a role is synonymous to a named group. The conditions for
entry to a role are described in terms of credentials that establish a client’s suitability to enter the
role, together with constraints on the parameters of those credentials. The work on RDL also falls
into the category of certificate-based access control, which is adopted by trust-management
systems described separately in Section 2.2.3. The following is an example of an authorisation rule
in RDL, which establishes the right for clients assigned to the SeniorHaematologist role to invoke
the append method if they also possess a certificate called LoggedOn(km, s) issued by the Login

service, where s is a trusted server, i.e. if they have been logged on as km on a trusted machine.

append(haematol ogy-field, y, x) < SeniorHaematol ogi st(x) O Login.LoggedOn(km s):s in

Trust edServers

Roles in RDL are also considered as credentials, and can be used to assign clients to other roles as
in the following example where a user x, who belongs to both the Haematologist and the

SeniorDoctor roles, is also a SeniorHaematologist:

Seni or Haenat ol ogi st (x) ~ Haenatol ogi st(x) O Seni or Doct or (x)

RDL has an ill-defined notion of delegation, whereby roles can be delegated instead of individual
access rights in order to enable the assignment of users to certain roles. The notion of election is
introduced to enable a client to delegate a role that they do not themselves possess, to other clients.
We believe that assignment of users to roles should be controlled with user-assignment constraints
instead. The following example from [Hayton et al. 1998] specifies that the chief examiner may
elect any logged on user who belongs to the group Staff to be an examiner, for the examination

subject e.

Exami ner (p,e) Login.LoggedOn(p,s) < ChiefExaminer : p in Staff

Role-based Access Control

Some researchers have concentrated on formal specification languages which implement specific

concepts described within the RBAC models, with emphasis on the specification of constraints.

Chen et al. [Chen et al. 1995] introduce a language based on set theory for specifying RBAC state-
related constraints, which can be translated to a first-order predicate-logic language. They define
an RBAC system state as the collection of all the attribute sets describing roles, users, privileges,
sessions as well as assignments of users to roles, permissions to roles and roles to sessions. They

also define constraints in RBAC as the specification of restrictions to RBAC states, called

www.manaraa.com

36 Chapter 2. Background and Related Work

invariants, as well as to state changes, called preconditions. They use this model to specify
constraints for RBAC in two ways: (i) by treating them as invariants that should hold at all times,
and (ii) by treating them as preconditions for functions such as assigning a role to a user. They
define a set of global functions to model all operations performed in an RBAC system, and specify
constraints which include: conflicting roles for some users, conflicting roles for sessions of some
users, and prerequisite roles for some roles with respect to other users. The following example from
[Chen et al. 1995] can be used as an invariant or as a precondition to a user-role assignment, to

indicate that assigned roles must not be conflicting with each other:

Role set: R={ry, rp, ... , rn}

User set: U= {ul, u2, ... , um}

Check-condition: oneelenent(R) O rol e-set(oneel enent(U)) -
allother(R) n role-set(oneelenment(U)) = 0

The two non-deterministic functions, oneel enent and al | ot her, are introduced in the language to
replace explicit quantifies. Oneel enent selects one element from the given set, and al | ot her

returns a set by taking out one element from its input.

RSL99 [Ahn et al. 1999] is a formal language, which extends the ideas introduced in [Chen et al.
1995] and can be used for specifying separation of duty properties in role-based systems. The
language covers both static and dynamic separation of duty constraints, and its grammar is simple,

although the expressions are rather complicated and inelegant.

Since time is not defined as part of the state of an RBAC system as defined in [Chen et al. 1995],
the two proposed languages described above cannot specify temporal constraints. The specification
of temporal constraints on role activations is addressed in the work by Bertino et al. [Bertino et al.
20001, which extends the RBAC models with a temporal model called TRBAC. They propose an
expression language that can be used to specify two types of temporal constraints: (i) periodic
activation and deactivation of roles using periodic expressions, and (ii) specification of temporal

dependencies among role activations and deactivations using role triggers.

A role can be activated/deactivated by means of role triggers specified as rules to automatically
detect activations/deactivations of roles. Role triggers can also be time-based or external requests to
allow administrators to explicitly activate/deactivate a role, and are specified in the form of
prioritised event expressions. The following example from [Bertino et al. 2000] shows two periodic
expressions (PEI and PE2) and two role triggers (RT1 and RT2). The periodic expressions state
that the role doctor-on-night-duty must be active during the night. The role triggers state that the
role nurse-on-night-duty must be active whenever the role doctor-on-night-duty is active. In the
example, the symbols VH and H stand for very high and high respectively and denote priorities for

the execution of the rules.

www.manaraa.com

Section 2.2. Policy Specification Approaches 37

(PE1) ([1/1/2000, o], Night-time, VH activate doctor-on-night-duty)

(PE2) ([1/1/2000, o], Day-tinme, VH deactivate doctor-on-night-duty)

(RT1) (activate doctor-on-night-duty - H activate nurse-on-night-duty)
(RT2) (deactivate doctor-on-night-duty - H deactivate nurse-on-night-duty)

In general, logic-based approaches to policy specification allow formal reasoning about the
specified policies, and enable properties of the specification to be proved, but they are not aimed at
human interpretation and do not directly map to an implementation. The use of logic is important in
the area of policy refinement whereby high-level abstract policy specifications are refined to
formats amenable to direct implementation or analysis. As an example, Michael et al. [Michael et
al. 2001] describe a suite of tools, which serve as an expert database management system to
automate the process of mapping natural language policy statements into equivalent first-order
predicate calculus. Their proposal maps statements like the following: “4 valid password is issued
to an authorised user to allow the user to logon. The user must logon to obtain access to the
system. Access is granted when a valid password is entered to complete a logon” into modal logic
as shown below, and answers queries about the policies:

Ox (password(x) - (Os (Oc (character(c) O part_of(c,x)) - menber(c,s))) - (Ch (size(s,n)
On=38)))))

2.2.2 High-level Policy Languages for Security

Although most of the efforts on security policy specification focus on the use of formal logic, some
approaches have been proposed for high-level security languages. The security policy language
(SPL) [Ribeiro et al. 2001a] is an event-driven policy language that supports access-control,
history-based and obligation-based policies. SPL is implemented by an event monitor that for each
event decides whether to allow, disallow or ignore the event. Events in SPL are synonymous with
action calls on target objects, and can be queried to determine the subject who initiated the event,
the target on which the event is called, and attribute values of the subject, target and the event
itself. SPL supports two types of sets to group the objects on which policies apply: groups and
categories. Groups are sets defined by explicit insertion and removal of their elements, and
categories are sets defined by classification of entities according to their properties. The building
blocks of policies in SPL are constraint rules which can be composed using a specific tri-value
algebra with three logic operators: and, or and not. A simple constraint rule is comprised of two
logical binary expressions, one to establish the domain of applicability and another to decide on the
acceptability of the event. The following extract from [Ribeiro et al. 2001a] shows examples of
simple rules and their composition. Note that conflicts between positive and negative authorisation
policies are avoided by using the tri-value algebra to prioritise policies when they are combined as
demonstrated by the last composite rule of the example. The keyword ce in the examples is used to

refer to the current event.

www.manaraa.com

38 Chapter 2. Background and Related Work

/! Every event on an object owned by the author of the event is allowed
Owner Rul e: ce.target.owner = ce.author :: true;

/1 Payment order approvals cannot be done by the owner of payment order
DutySep: ce.target.type = "paynentOrder" & ce.action.nane = "approve"
;. ce.author != ce.target.owner;

/1 lnmplicit deny rule.
deny: true :: false;

/1 Sinmple rule conjunction, with default deny val ue
Onner Rul e AND Dut ySep OR deny;

/] DutySep has a higher priority then OwerRule

DutySep OR (DutySep AND Oaner Rul e);

SPL defines two abstract sets called PastEvents and FutureEvents to specify history-based policies
and a restricted form of obligation policy. The type of obligation supported by SPL is a conditional

form of obligation, which is triggered by a pre-condition event:

Principal _O nust do Action_Oif Principal_T has done Action_T

Since the above is not enforceable, they transform it into a policy with a dependency on a future

event as shown below, which can be supported in a way similar to that of history-based policies:

Principal _T cannot do Action_T if Principal _Owll not do Action_O

SPL obligations are thus additional constraints on the access control system, which can be enforced
by security monitors [Ribeiro et al. 2001b], and not obligations for managers or agents to execute

specific actions on the occurrence of system events, independent of the access control system.

The notion of a policy is used in SPL to group set definitions and rules together to specify security
policies that can be parameterised; policies are defined as classes which allow parameterised
instantiation. Instantiation of a policy in SPL also means activation of the policy instance, so no
control over the policy life-cycle is provided. Further re-use of specifications is supported through
inheritance between policies. A policy can inherit the specifications of another policy and override
certain rules or sets. Policy constructs can also be used to model roles, in which case sets in the
policy specify the users allowed to play the role and those playing the role. Rules or other nested
policies inside a role policy specify the access rights associated with the role. SPL provides the
ability to hierarchically compose policies by instantiating them inside other policies, thus enabling
the specification of libraries of common security policies that can be used as building blocks for
more complex policies. The authors claim that this hierarchical composition also helps restrict the
scope of conflicts between policies, however this is not clear as there may be conflicts across
policy hierarchies. Note that SPL does not cater for specification of delegation of access rights
between subjects, and there is no explicit support for specifying roles. The following example from

[Ribeiro et al. 2001a] defines an InvoiceManagement policy, which allows members of the clerks

www.manaraa.com

Section 2.2. Policy Specification Approaches 39

team to access objects of type invoice. The actual policy that permits the access is specified as ACL

separately and instantiated within InvoiceManagement using the keyword new:

policy | nvoi ceManagenent

{

// Aerks would usually be a role but for sinplicity here it is a group
team cl erks

/1 Invoices are all object of type invoice
collection invoices =
Al bj ects@ .doctype = "invoice" };
/1 In this sinple policy clerks can perform every action on invoices

Dol nvoi ces: new ACL(cl erks, invoices, AllActions);
?usi ngACL: Dol nvoi ces;

Tower [Hitchens et al. 2001] is a language designed to specify RBAC policies. The language
supports the basic RBAC model elements, extended with the target objects to which access is being
controlled. Thus Tower provides structures to define objects, privileges, permissions, users and
roles, and allows the definitions of multiple structures within blocks bounded by begin and end
statements to enable reusability of common elements. Note that privileges define a specific access
type on an object, permissions are composed of privileges and roles contain a set of permissions.
Simple or set variables can be defined within a block to enable reference to system or structure-
specific values (e.g. the id of a user or the time of access on an object) across all structures defined
in the block. The use of variables enables fine-grained authorisations with the ability to base access
control decisions on past events. The following example from [Hitchens et al. 2000] specifies a
dynamic separation of duty policy, and demonstrates the definition of some of the structures in
Tower. The example considers a class of cheque objects, which may be accessed by members of a
role accountant, but with no user permitted to both issue and authorise the same cheque. The
variable issuing user is used to represent the id of the user which issues the check, and is used in
the specification of the condition for the separation of duty. The issuing user variable is assigned

to be the user who executes the issue privilege, and must not be the user who executes the

authorise_privilege.
begi n
i ssuing_user* : userid
issue_privilege := privilege
i ssui ng_user := user
{i ssue}
end_privil ege
authorise_privilege := privilege

i ssui ng_user <> user

{aut hori se}
end_privil ege
check_perm ssion : = perm ssion

cheque_cl ass

privilege {issue_privilege, authorise_privilege}
end_perm ssi on

accountant := role
per m ssi ons {check_permi ssion}
end_role

end

www.manaraa.com

40 Chapter 2. Background and Related Work

The specification of privileges in Tower allows conditions to restrict the validity of the privilege,
and actions that must be executed when the invocation of any of the methods identified in the
privilege is allowed. However, privileges are always specified for a class of objects, which is
restrictive because in realistic applications privileges are normally specified for sets of objects
grouped together for reasons other than the class or type of the objects. In addition, the need to
explicitly define object structures for each object that needs to be referred in the permissions makes
the use of the language impractical in large-scale systems where the objects are already described
in interface definition languages. In addition, Tower is based on the concept of ownership whereby
each object and structure has an owner that has control over that object or structure, making the
language unnecessarily complicated. The specification of roles is Tower is also problematic. A role
defines which other roles are mutually exclusive to that role, as well as the conditions under which
the role can be active in a session. This restricts the use of a role to a specific application; some
roles in an organisation may be defined as mutually exclusive within one department but not
mutually exclusive within another. The constraints on mutually exclusive roles, role activation and
assignment of users to roles must be separated from the specification of a role, and can be specified
in the form of meta-rules or meta-policies for sets of roles. Finally, roles in Tower can inherit
permissions from other roles and arbitrarily specify which permissions to exclude. This results in a

messy system where the inheritance relationships between roles are difficult to maintain.

Recent proposals express access control policies as XML documents as exemplified by XACML
[OASIS 2001]. XACML is an XML specification for expressing policies for information access
over the Internet and is being defined by the Organisation for the Advancement of Structured
Information Standards (OASIS) technical committee. The language provides XML with a
sophisticated access control mechanism that enables the initiator not only to securely browse XML
documents but also to securely update each document element. Similar to existing policy
languages, XACML is used to specify an subject-target-action-condition oriented policy in the
context of a particular XML document. The notion of subject comprises identity, group, and role
and the granularity of target objects is as fine as single elements within the document. The
language supports roles, which are the same as groups, and are defined as collections of attributes
relevant to a principal. XACML includes conditional authorisation policies, as well as policies with
external post-conditions to specify actions that must be executed prior to permitting an access. e.g.
“A physician may read any record and write any medical element for which he or she is the
designated primary care physician, provided an email notice is sent to the patient or the
parent/guardian, in case the patient is under 16”. An example of a policy specified in XACML is

shown below:

<?xm version="1.0" encodi ng="UTF-8"?>
<appl i cabl ePol i cy xm ns="http://ww. oasi s-open. org/ comrittees/accessControl/docs/draft-
act c- schena- pol i cy-08. xsd" xm ns: xsi="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"

www.manaraa.com

Section 2.2. Policy Specification Approaches 41

xm ns: rec="nedi co. conf record" xmnl ns:san ="hht p: // www. oasi s-
open. org/ conm ttees/ security/docs/draft-sstc-schema-assertion-22"
Xsi : schemaLocati on="htt p://ww. oasi s- open. or g/ conmi tt ees/ accessControl /docs/draft-actc-
schema- pol i cy- 08. xsd" nmj or Ver si on="0" mi nor Ver si on="8" i ssuer="mnedi co. conf
pol i cyNane="researchers may read nedical elenents and the patient's date of birth and
gender" i ssuel nstant="2002-01--8">
<l-- -->
<t ar get
resour ced assi ficati on="nedi co. conirecord/ nedi cal . *"
resourced assificationTransform="http://ww. oasi s-open. org/conmittees/
accessControl /docs/transforms/regul ar Expressi on">
read
</target>
<t ar get
resour ceC assification="nedi co. conl record/ patient/patientDoB.*"
resourceC assificationTransforns"http://ww. oasi s-open. org/ comittees/
accessControl /docs/ transforns/regul ar Expressi on">
read
</target>
<t ar get
resour ced assi fication="nedi co. confrecord/patient/patient/gender.*"
resourced assificationTransform="http://ww. oasi s-open. org/conmittees/
accessControl /docs/transforms/regul ar Expressi on">

read
</target>
<policy>
<equal >
<val ueRef attributeName="rec:role"/>
<val ue xsi:type="string">researcher</val ue>
</ equal >
</ policy>

</ appl i cabl ePol i cy>

The above policy assumes an XML schema to describe medical records, and specifies that a
researcher may read a medical element and the patient’s date of birth and gender. Although the
granularity of access control with XACML is fine, the policy is rather verbose and not really aimed
at human interpretation. In addition, the language model does not include a way of grouping
policies. Note that XACML is intended to be used in conjunction with SAML (security assertion
and markup language) assertions and messages, and can thus also be applied to certificate-based
authorisations. We discuss certificate-based authorisations in the following section. The work on
XACML includes an architecture for enforcing policies which extends the IETF policy architecture

described in Section 2.3.

LaSCO [Hoagland et al. 1998] is a graphical approach for specifying security constraints on
objects, in which a policy consists of two parts: the domain (assumptions about the system) and the
requirement (What is allowed assuming the domain is satisfied). Policies defined in LaSCO have
the appearance of conditional statements used to express authorisations between objects in the
system and are stated as policy graphs. A policy graph is an annotated directed graph where the
annotations are domain and requirement predicates. Nodes in the policy graph represent the sort of
objects described by the associated domain predicate. Collectively, the nodes, edges, and domain
predicates form the domain of a policy graph. The domain describes when the policy is in effect,
i.e. when it applies. The other part of the policy graph is the requirement, which consists of the
requirement predicates on each of the nodes and edges. A node requirement predicate is an

expression that must be met on the object and constitutes an authorisation policy. LaSCO cannot

www.manaraa.com

42 Chapter 2. Background and Related Work

specify any form of obligation policies, and there is no way of composing policies or specifying
policies for groups of objects apart from those defined for classes of objects. This makes the scope
of this approach very limited to satisfy the requirements of security management. In addition
graphs are often used in conjunction with a textual version to specify details not easily expressed in
the graphical format. In LaSCO this is lacking making the language difficult to use and further
restricting its expressiveness. Note however, that a graphical approach to specifying policies is

attractive for human users, and is thus an interesting future research direction.

2.2.3 Trust Specification

Applications such as e-commerce and other Internet-enabled services require connectivity between
entities that do not know each other. In such situations, the traditional assumptions for establishing
and enforcing access control do not hold; subjects of requests can be remote, previously unknown
users, making the separation between authentication and access control difficult. A possible
solution to this problem is the use of digital certificates or credentials representing statements
certified by given entities, which can be used to establish properties of their holder (e.g. identity,
accreditation). Access control makes the decision of whether or not a party can execute an access
based on properties that the party may have, and can prove by presenting one or more certificates.
Such an approach is often called certificate-based authorisation and is adopted for the specification
of trust. Trust management frameworks combine authentication with authorisation [Grandison et al.
2000] and are used for applications such as web based labelling, signed email, active networks and

e-commerce.

In [Blaze et al. 1998; Blaze et al. 1999], two trust management applications are presented: the
PolicyMaker and its successor KeyNote. Both of these applications are used to answer signed
queries of the form “does a set of requested actions r, supported by credential set C, comply with
policy P?”, where the credentials can be public key certificates with anonymous identity. Both
policies and credentials are predicates specified as simple C-like and regular expressions. In this
context a policy is a trust assertion that is made by the local system and is unconditionally trusted
by the system. Although trust management systems provide an interesting framework for reasoning
about trust between unknown parties, assigning authorisations to keys may result in authorisations
that are difficult to manage [Samarati et al. 2000]. In addition, providing a common solution to

both authentication and access control makes the system more complex.

The trust policy language (TPL) by IBM [Herzberg et al. 2000] provides a clearer separation
between the authentication of subjects based on certificates and the assignment of authorisations to
those subjects which have been successfully authenticated. With TPL, the credentials result in a

client being assigned to a role which specifies what the client is permitted to do, where a role is a

www.manaraa.com

Section 2.2. Policy Specification Approaches 43

group of entities that can represent specific organisational units (e.g. employees, managers,
auditors). The assignment of access rights to roles is outside the scope of TPL; the philosophy of
the work on TPL is to extend role-based access control mechanisms by mapping unknown users to
well defined roles. Although the certificate is intended to be format-independent, the current
implementation of the system uses X.509v3 certificates, and defines the language in XML, which
makes the syntax rather verbose. Note that unlike KeyNote, TPL permits negative certificates
interpreted as suggestions not to trust a user or not to assign a user to a given role. The following
example is taken from [Grandison et al. 2000] to demonstrate the use of TPL. In summary, the
policy states that a customer of a retailer company is an employee of a department of a partner
company. The first group defined is the originating retailer. Then, it is stated that entities that have
partner certificates, signed by the original retailer, are placed in the group partners. The group
department is defined as any user having a partner certificate signed by the partners group. Finally,
the customer group consists of anyone that has an employee certificate signed by a member of the

departments group who has a rank greater than 3.

<POLI CY>
<GROUP NAME="sel f”"> </ GROUP>
<CGROUP NAME="partners”>
<RULE>
<INCLUSION | D="partner” TYPE="partner” FROM “sel f”> </| NCLUSI ON>
</ RULE>
</ GROUP>
<GROUP NAME="depart ment s” >
<RULE>
<I NCLUSI ON | D="partner” TYPE="partner” FROWE"partners”> </|NCLUSI O\>
</ RULE>
</ GROUP>
<GROUP NAME="cust oners”>
<RULE>
<I NCLUSI ON | D="cust omer” TYPE="enpl oyee” FROVE"departments”> </|NCLUSI O\>
<FUNCTI ON>
<GIr>
<FI ELD | D="custoner” NAME="rank”></ Fl ELD>
<CONST>3</ CONST>
</ GI'>
</ FUNCTI ON>
</ RULE>
</ GROUP>
</ PCLI CY>

2.2.4 Management Policy Specification

The policy description language (PDL) is an event-based language originating at the network
computing research department of Bell-Labs [Lobo et al. 1999]. In PDL they use the event-
condition-action rule paradigm of active databases to define a policy as a function that maps a
series of events into a set of actions. The language can be described as a real-time specialised
production rule system to define policies. The syntax of PDL is simple and policies are described
by a collection of two types of expressions: policy rules and policy defined event propositions.

Policy rules are expressions of the form:

www.manaraa.com

44 Chapter 2. Background and Related Work

event causes action if condition

Which reads: If the event occurs under the condition the action is executed. Policy defined event

propositions are expressions of the form:

event triggers policy-defined-event if condition

Which reads: If the event occurs under the condition, the policy-defined-event is triggered. Events
can be primitive or complex, and there are two types of primitive events: the policy defined events,
which are only generated by the policy defined event propositions, and the system events, which
are generated by the environment. Primitive event classes can define attributes, and instances of the
classes take actual values for those attributes that can be referenced by other events, actions or
conditions within the same rule. Primitive events can be composed to form complex events that

enable policies to be enforced under any of the following situations:

» If two events e/ and e2 occur simultaneously.
» If an event e does not occur.
e Ifan event e2 immediately follows an event e/.

* If an event e2 occurs after an event e/.

The following example from [Kohli et al. 1999] makes use of some of the different features of the
language to define a policy for a service provider network which rejects call requests when there is
an excessive number of network signalling timeouts over the calls made (i.e. overload state) until
the time-out rate goes down to a reasonable number. The policy has three policy defined event

propositions and one policy rule proposition.

Events: nornal _node: policy defined event, restricted_node : policy defined event
call _made: systemevent, tinme_out: systemevent, power_on: system event

Actions: restrict_calls, accept_all_calls

Pol i cy description
/1 when the systemstarts the prinmitive event nornal _node is triggered. i.e. the
/1 systemstarts in normal nopde
power _on triggers normal _node

/1 when in normal _node, a sequence of call_made or time_out events will trigger
/'l restrict_node if the overload threshold is exceeded. t is the overload ratio
/1 of signalling tinmeouts over the calls made. The " sign denotes a sequence of
/] zero or nore events.
nor mal _node, “~(call_nade | tinme_out) triggers restricted_node

if Count(tine_out) > t*Count(call_made)

restricted_node causes restrict_calls

/1 when in overlaod node, a sequence of call_nade or time_out events will trigger
/1 normal _node if the normal threshold is exceeded. t’' is considered to be a
/] reasonable timeout rate
restricted_node, ~(call_made | time_out) triggers nornal _node
if Count(tinme_out) < t’*Count(call_nade)

/1 Assunes only one cal |l Made or tineCut event per epoch
nor nal _node causes accept_all _calls

www.manaraa.com

Section 2.2. Policy Specification Approaches 45

Despite its expressiveness, PDL does not support access control policies, nor does it support the
composition of policy rules into roles, or other grouping structures. The language has clearly
defined semantics and an architecture has been specified for enforcing PDL policies. Work on
conflict resolution for policies written in PDL is described in [Chomicki et al. 2000], and
extensions to the language to specify workflows for network management can be found in [Kohli et
al. 1999]. The language has been used to program Lucent switching products [Virmani et al. 2000]

and proves to be powerful in a variety of network operations and management scenarios.

The group working on the International Standards Organisation (ISO) Open Distributed
Programming Reference model (ODP-RM) are defining an enterprise language as part of the RM-
ODP Enterprise Viewpoint [ISO/IEC 1999], which incorporates concepts such as policies and roles
within a community. A community in RM-ODP terminology is defined as a configuration of
objects formed to meet an objective. The objective is expressed as a contract, which specifies how
the objective can be met, and a configuration is a collection of objects with defined relationships

between them. The community is defined in terms of the following elements:

e The enterprise objects comprising the community,

e The roles fulfilled by each of those objects and the relationships between them,

« The policies governing the interactions between enterprise objects fulfilling roles,

e The policies governing the creation, usage and deletion of resources,

e The policies governing the configuration of enterprise objects and assignment of roles to
enterprise objects,

» The policies relating to the environment contract governing the system.

Policies constrain the behaviour of enterprise objects that fulfil actor roles in communities and are
designed to meet the objective of the community. Policy specifications specify what behaviour is
allowed or not and often contain prescriptions of what to do in case some rule is violated. Policies

in the ODP enterprise language thus cover the concepts of obligation, permission and prohibition.

The ODP enterprise language is an abstract language in the sense that it does not prescribe the use
of any particular notation. Recently, there have been a number of attempts to define precise
languages that implement the abstract concepts of the enterprise language. These approaches
concentrate on using UML to graphically depict the static structure of the enterprise viewpoint
language as exemplified by [Steen et al. 2000] (see Figure 2.4), as well as languages to express
policies based on those UML models. Steen et al. [Steen et al. 1999; Steen et al. 2000] propose a
language to support the enterprise viewpoint where policy statements are specified using the
grammar shown below. Each statement applies to a role, the subject of the policy, and represents
either a permission, an obligation or a prohibition for that role. The grammar of the language is

concise, however it does not allow composition of policies or constraints for groups of policies.

www.manaraa.com

46 Chapter 2. Background and Related Work

Constraints cannot be specified to restrict the activation/deactivation of roles or the assignment of
users and permissions in roles. Note that the Object Constraint Language (OCL) [OMG 1999b] is

used to express the logical conditions in the before-, if- and where- clauses defined in the grammar.

[R?] A<role>is (permtted O obliged O forbidden) to (do <action> [before <condition>] O
satisfy <condition>)[, if <condition>][, where <condition>][, otherw se see <nunber>].

Pokop Prdoy
Ll
Femasen Lt bon Prohsbrizn
Enisrpreaishsdcar - ! o
o iy T da e
= = i e i el i Erimrerissdoion
Hricriiods
a4
! g S I farinfmaiols
Entugeisalcloy | < < EmipaprissCionings e 1.0 bk i .
" ' e e
spaciias? & nelErisiEs i s - Pro— - B
cnPrincipsl Rnis
1 -
— i ¥ Ir
Lo T) 1 £ Camriayiandty |1 =i S

F i vl i gt

Figure 2.4 A UML meta-model of the enterprise viewpoint language

The authors specify the semantics of the policy language by translating it to Object-Z, an object-
oriented extension of the specification language Z. The following examples from [Steen et al.

2000] demonstrate the use of the proposed language.

[R1] A Borrower is permitted to do BorromitemlIten), if(fines < 5*pound).
[R2] A UGBorrower is forbidden to do Borrow(itemlIten), where itemisKindOf (Periodical).
[R3] A Borrower is obliged to do Return(itemlten) before (today > dueDate),

if (loans-exists(loan O loan.item=iten)),
where (dueDate = | oans-select(loan Oloan.item= iten).dueDate),

ot herwi se see R4.
Policy statements R/ and R2 specify a permission and a prohibition respectively. R/ permits a
member of the Borrower role to borrow an item if the fines of that borrower are less than 5 pounds.
R2, forbids an undergraduate student belonging to the UGBorrower role to borrow periodicals. R3
is an obligation specifying that a borrower must return an item by the dueDate of that item. R3 is
conditional upon the item to be returned actually being on loan to the borrower, as specified by the
if-clause. The where-clause constrains the logic variable dueDate to be equal to the dueDate of the
loan in question, and the before-clause contains a condition upon which the obligation should have
been fulfilled. Obligations do not contain explicit specifications of the events upon which the

actions must be executed which makes their implementation difficult. Note that the otherwise-

www.manaraa.com

Section 2.2. Policy Specification Approaches 47

clause is an exception mechanism that indicates what will happen when the obligation is violated.

The actions to be executed on a violation are specified in another policy (R4).

Policy-based management is also applied to configuration management and builds on monitoring
software to enable automation of network and system administration through the event-condition-
action paradigm; policy-based configuration languages associate the occurrence of specified events
or conditions, with responses to be carried out by an agent. Cfengine is a language-based
administration system targeted at BSD and System-5-like operating systems, which might be
connected through a TCP/IP network [Burgess 1995]. Cfengine grew out of the need to replace
complex shell scripts used for the automation of administration tasks on Unix systems and allows
the creation of single, central configuration files which describe how every host on the network
should be configured. It uses the idea of classes to group hosts and dissect a distributed
environment into overlapping sets. Host-classes are essentially labels which document the
attributes of different systems. The following classes are meaningful in the context of a particular
host: (i) the identity of the machine, including hostname, address, network, (ii) the operating
system and architecture of the host (iii) an abstract user-defined group to which the host belongs
(iv) the result of any proposition about the system, including the time or date. Policies are specified
for classes of hosts and define a sequence of actions regarding the configuration of a host. The
following example demonstrates the use of the language for configuration management [Burgess et
al. 2001]:

! es(:l i nux| sol ari s).Hr12. OnTheHour . ! exception_host: :
/etc/ passwd node=0644 action=fixall infornetrue

The first line simply defines the name files for the action. The second line identifies the class of
hosts for which the action is to be executed, followed by the actual command. The command-line
specifies that the cfengine agent, which is always the subject of the policy, must search for all
password files with an invalid mode, fix them, and inform the administrator. The class membership
expression specifies all hosts which are of type linux or solaris, during the time interval from
12:00am to 12:59am, apart from a host labelled with the class exception_host. Note that the second
line specifies too much information in a single clause making the interpretation of the policy too
complicated. It identifies the target of the policy, i.e. all the hosts falling within the classification,
the condition for execution of the policy, which is a time interval, and a trigger which specifies that
the action must be executed on the hour. Policies are stored in a central repository, accessible to
every host, and an active cfengine agent on each host executes the policies which apply only to that
host.

Cfengine achieved its original goals through a scripting language suitable for system

administrators, which automates common administrative tasks on Unix systems. However, it is still

www.manaraa.com

48 Chapter 2. Background and Related Work

lacking functionality to enable scalable policy-based configuration management, and its creators

admit the need for extensions to enable enterprise-level policy specification [Burgess 2001].

Others, focus on the specification of policies using the full power of a general purpose scripting or
interpreted language (eg TCL or Java) which can be loaded into network components or agents to
implement policies. Such approaches are often leveraging the mechanisms in the area of active
networks [Tennenhouse et al. 1997] to enable the control of resources at a very low level. For
example Bos et al. [Bos 1999] use C-programs to specify application policies for resource
management in netlets, which are small virtual networks within a larger virtual network. In general
for all of these approaches, the security concerns are increased, and malicious or improperly tested
code can potentially damage the network. In addition, it is difficult to determine whether two
computer programs specifying two different policies are contradictory or conflict with each other in

any way.

2.2.5 Network Policy Specification

The area of network policy specification has recently seen a lot of attention both from the research
and the commercial communities. We call network policy the rules which define the relationship
between clients using network resources and the network elements that provide those resources.
The main interest in network policies is to manage and control the quality of service (QoS)
experienced by networked applications and users, by configuring network elements using policy
rules. The most notable work in this area is the Internet Engineering Task Force (IETF) policy
model, which considers policies as rules that specify actions to be performed in response to defined

conditions:

if <condition(s)> then <action(s)>

The condition-part of the rule can be a simple or compound expression specified in either
conjunctive or disjunctive normal form. The action-part of the rule can be a set of actions that must
be executed when the conditions are true. Although this type of policy rule prescribes similar
semantics to an obligation of the form event-condition-action, there is no explicit event
specification to trigger the execution of the actions. Instead it is assumed that an implicit event such
as a particular traffic flow, or a user request will trigger the policy rule. In addition, although the
IETF are considering the specification of admission control policies, the above rule-based approach
is not suitable for specifying such policies. Simple admission control policies can be specified by
using an action to either allow or deny a request if the condition of the policy rule is satisfied. The
following are simple examples of the types of rules administrators may want to specify. The first

rule assures the bandwidth between two servers that share a database, directory and other

www.manaraa.com

Section 2.2. Policy Specification Approaches 49

information. The second rule gives high priority to multicast traffic for the corporate management

sub-network on Monday nights from 6:00pm to 11:00pm, for important (sports) broadcasts:

if ((sourcel PAdress = 192.168.12.17 AND destinati onl PAdress = 192.168.24.8) OR
(sourcel PAdress = 192.168.24. 8 AND desti nati onl PAdress = 192.168.12.17)) then
set Rate := 400Kbps

if ((sourcel PSubnet = 224.0.0.0/240.0.0.0) AND (timeOfDay = 1800-2300) AND
(dayof week = Monday)) then
set Priority :=5
The IETF do not define a specific language to express network policies but rather a generic object-
oriented information model for representing policy information following the rule-based approach
described above, and early attempts at defining a language [Strassner et al. 1998] have been
abandoned. The policy core information model (PCIM) [Moore et al. 2001] extends the common
information model (CIM) [DMTF 1999a] defined by the DMTF with classes to represent policy
information. The CIM defines generic objects such as managed system elements, logical and
physical elements, systems, service, users, etc, and provides abstractions and representations of the
entities involved in a managed environment including their properties, operation and relationships.
The specification of information models is important to enable a common way of specifying policy.
However, it is independent of the actual policy specification task, and does not solve the problem
of specifying policies. Apart from the PCIM the IETF are defining an information model to
represent policies that administer, manage, and control access to network QoS resources for
integrated and differentiated services QoS management [Snir et al. 2001]. The philosophy of the
IETF is that business policies expressed in high-level languages, combined with the network
topology and the QoS methodology to be followed, will be refined to the policy information model,
which can then be mapped to a number of different network device configurations. Vendors
following the IETF approach are using graphical tools to specify policy in a tabular format and

automate the translation to PCIM. We provide an overview of commercial tools in Section 2.4.

Figure 2.5 shows the classes defined in the PCIM and their main associations. Policy rules can be
grouped into nested policy groups to define policies that are related in any application specific way,
although no mechanism exists for parameterising rules or policy groups. Note that both the actions
and conditions can be stored separately in a policy repository and reused in many policy rules. A
special type of condition is the time-period over which the policy is valid. The

PolicyTimePeriodCondition class covers a very complex specification of time constraints.

Policy rules can be associated with a priority value to resolve conflicts between conflicting rules.
This approach is not scalable in large networks with a large number of rules specified by a number
of different administrators. In addition policy rules can be tagged with one or more roles. A role
represents a functional characteristic or capability of a resource to which policies are applied, such

as backbone interface, frame relay interface, BGP-capable router, web-server, firewall, etc. The use

www.manaraa.com

50 Chapter 2. Background and Related Work

of role labels is essentially used as a mechanism for associating policies with the network elements

to which the policies apply.

ManagedElement
(from Core)

A

’7 PolicylnSystem o1
*
System

Policy (ABSTRACT) (from Core)
Y A
PolicyGroup PolicyRule AdminDomain

(from Core)

*
*

PolicyRepository

*

PolicyCondition (ABSTRACT)

lo.1 0.1

‘ *
PolicyAction (ABSTRACT)

: f

PolicyTimePeriodCondition VendorPolicyCondition VendorPolicyAction

Figure 2.5 IETF policy core information model

An advantage of the information modelling approach followed by the IETF is that the model can be
easily mapped to structured specifications such as XML which can then be used for policy analysis
as well as distribution of policies across networks. The mapping of CIM to XML is already
undertaken within the DMTF [DMTF 1999b]. The IETF define a mapping of the PCIM to a form

that can be implemented in a directory that uses LDAP as its access protocol [Strassner et al. 2002].

Other approaches to network policy specification try to extend the IETF rule-based approach to
specify traffic control using a concrete language. An example is the path-based policy language
(PPL) from the Naval postgraduate school described in [Stone et al. 2001]. The language is
designed to support both the differentiated as well as the integrated services model and is based on
the idea of providing better control over the traffic in a network by constraining the path (i.e. the

links) the traffic must take. The rules of the language have the following format:

policyl D <user| D> @paths} {target} {conditions} [{action_iten}]

action_item= [{condition}:] {actions}

Action_items in a PPL rule correspond to the if-condition-then-action rule of the IETF approach.
The informal semantics of the rule is: “policyID created by <userID> dictates that target class of
traffic may use paths only if {conditions} is true after action_items are performed”’. The following

are examples of PPL rules from [Stone et al. 2001]:

Policyl <net _manager> @{<1, 2,5>} {class = {faculty}} {*} {priority := 1}
Policy2 <Betty> @{<1,*,5>} {traffic_class = {accounting}} {day != Friday : priority := 5}

www.manaraa.com

Section 2.3. Policy Management Architectures 51

Policyl states that the path starting at node 1, traversing to node 2, and ending at node 5 will
provide high priority for faculty users. Policy2 uses the wild-card character to specify a partial path.
It states that, on all paths from node 1 to node 5, accounting class traffic will be lowered to priority
5 unless it is a Friday. In this policy the action_items field is used with temporal information to

influence the priority of a class of traffic.

Note that the use of the userID is not needed in the specification of the rules, and unnecessarily
complicates the grammar. The ID of the creator of a policy, as well as information such as the time
of the creation, or other priority labels attached to a rule are better specified as meta-information
that could be used for the analysis of policies. PPL does not provide any way of composing policies

in groups, and there is no use of roles either.

2.3 Policy Management Architectures

Figure 2.6 shows the policy-based management architecture defined within the IETF framework,
which is being used as the basis for other efforts at designing policy architectures, including those
by most commercial vendors. The policy management tool is expected to provide a graphical user
interface to allow administrators to specify the policies that are active in the network, translate the
input into an LDAP schema and store them in the policy repository. However, the tool can also be
used to determine the association between the policies and the different devices to which the
policies are applicable, or monitor the changes in stored policies and inform the relevant policy
consumers. The policy repository is used to store the policies generated by the management tools.
It is assumed that policies are objects stored in an LDAP (Lightweight Directory Access Protocol)

directory service.

Policy management tool

Policy
repository

‘ Policy decision point
'}

Network element

‘ Policy enforcement point

Figure 2.6 IETF policy architecture

A policy decision point (PDP), also referred to as a policy consumer, retrieves policies from the
policy repository, interprets the policies and sends them to policy enforcement points (PEP) (e.g.
routers, bridges) to enforce them. A PDP may need to translate the set of rules it receives from the
repository to a format that is understood by the corresponding PEP’s. It uses the policy role

attribute of a policy rule to identify the policy enforcement points it needs to send the rule to. Other

www.manaraa.com

52 Chapter 2. Background and Related Work

functions of the PDP include receiving policy decision requests from PEPs and returning policy
decisions to them. PDPs also send asynchronous policy decisions based on updates or external
requests. Policy enforcement involves the PEP applying actions according to the PDP’s decision
and based on current network conditions. These conditions can be static (source/destination IP
address) or dynamic (current bandwidth availability, time of the day). A PEP enforces the policy
for example by permitting/forbidding requests or allocating packets from a connection to a
particular queue. A PEP and PDP could be combined into a single component. Current work within
the IETF concentrates on the protocols to be used between different components with most of the
efforts focusing on LDAP for storing policies, and the common open policy service (COPS)

protocol for communication between a PDP and a PEP.

Note that there is no explicit event to trigger an IETF policy, so an implicit event such a packet
arrival at a router may trigger the search for applicable policies. This is done using the
characteristics of the packets, or the roles attached to the device. However, it is only practical for
the PEP to query the PDP for a decision on comparatively infrequent packets. The IETF
architecture supports the distribution of policies using both: a push-model, from the PDP’s to the
PEP’s, and a pull-model whereby the PEP’s request policies based on the implicit events in the
system. In addition, the automation of the distribution of policies based on changes in the network
topology, changes in the characteristics of the network devices, or the policy rules themselves is

also not adequately addressed.

Verma [Verma 2001] provides a detailed description of the concepts and their implementation
within the IETF framework including policy validation and translation algorithms, policy

distribution mechanisms and policy enforcement point algorithms.

2.3.1 Security Architectures

Architectures for deploying security policies within the role-based and the trust management
communities have been reported, with emphasis on authentication techniques to support credential-
based authorisation. The open architecture for secure interworking (OASIS) originating at the
University of Cambridge [Hayton et al. 1998; Hine et al. 2000] is an example of the category of
architectures which address the issue of enforcing access control policies based on roles, where the
access rights of a principal are grouped in roles to which a principal can be assigned using
credentials. The architecture is based on the RDL language described in Section 2.2.1. Others are
concentrating on implementing the RBAC models on existing middleware platforms. In [Beznosov
et al. 1999], they discuss the issues related to implementing RBAC models on the CORBA security
service [OMG 2001], and they conclude that this is possible with minimal extensions to the

CORBA security service.

www.manaraa.com

Section 2.4. Tool Support 53

Work is being carried out in relation to the KeyNote management system at the University of
Pennsylvania to define the Strongman security policy architecture [Keromytis et al. 2001]. The
philosophy of the Strongman architecture is illustrated in Figure 2.7. The interesting aspect of the
architecture is the compilation of various global high-level policy specifications into a common
lower-level policy interoperability layer implemented using KeyNote. The common policy layer is
used to implement the high-level policies onto a variety of mechanisms and network devices. This
idea identifies two important requirements: (i) the need for a common language (i.e. the policy
interoperability layer in this architecture) which will be used for the uniform enforcement of
policies onto a variety of mechanisms, and (ii) the need to enforce policies specified at a higher

level of abstraction than a credential-based authorisation system.

High level policy Network etc High level policy
(language A) information (language B)

|
|
|
‘ Compiler A ‘ ‘ Compiler B ‘ :
|
|
|
|
|

Global policy

“ ¥

Policy interoperability layer
(KeyNote)

v

Figure 2.7 The Strongman security architecture

Note that the security architectures briefly described above, largely ignore issues related to the
storage of policies in repositories and the distribution of policies to their enforcement components

in large-scale distributed systems.

2.4 Tool Support

Verma [Verma et al. 2001] describes a QoS tool used to specify Service Level Agreements (SLAS)
and to manipulate SLA related information in a tabular format. The tool transforms high-level
policy information into device configurations, and stores them in an LDAP directory. Another tool,
presented in [Mont et al. 1999b], focuses solely on template-based refinement of policies from

high-level goals.

Existing work within the RBAC community is limited to specifying access control configurations
in terms of roles. A centralised tool, presented in [Thomsen et al. 1998], translates access control
configuration from the RBAC framework to the target’s native security mechanism, which is then
transported to the target. Another web-based tool, presented in [Barkley et al. 1998], allows
administrators to specify roles, role hierarchies and constraints to implement RBAC for networked

servers using Web protocols in order to manage access to an organisation’s Web information.

www.manaraa.com

54 Chapter 2. Background and Related Work

In policy-based networking most of the tool support comes from industry and is based on the IETF
policy framework. The majority of the commercial tools are specific to quality of service
management, but many also include access control configuration. The list of vendor products is
very big but one could list the following major commercial policy-based network management
products: Nortel Optivity policy services, Orchestream, HP Openview PolicyXpert, Cisco
CiscoAssure policy networking, Allot communications NetPolicy, IPHighway open policy system,
Lucent technologies RealNet rules, SolSoft Visual Policy Management for Network Security,
Novell ZENworks, Computer Associates Infrastructure Management and eTrust solutions and
Tivoli Management Framework product suite. Surveys of commercial products and comparisons

are available on the web (see http://www-dse.doc.ic.ac.uk/Research/policies for more information).

A common feature in commercial tools is a graphical user interface which typically allows the
administrator to visually select a network device or other managed element from a hierarchically
arranged tree-view of policy targets, and specify the policies in the form of if <condition> then
<action> rules for the selected targets. The different products allow the specification of varying
degrees of conditions in policy rules including a number of time attributes, source or destination IP
addresses, IP type service, TCP and UDP port numbers, as well as higher level user-defined data,

and allow the user to permit or deny traffic based on those conditions.

An important effort common to some of the solutions is work towards support of multi-vendor
platforms, which is not adequately supported by most of the currently available products. In
addition, the different standards protocols are implemented at varying degrees from the different
vendors. A lot of the products support COPS as the main communication protocol for policy
information between the components of their architecture, while others support HTTP or CLI for
the configuration of routers and switches. In addition, not all vendors support LDAP for storing
policies although they use directories as a major component of their products both for storing
policy rules as well as network and user information, in order to enable scalability and third-party

interoperability.

Support for security is also available in many of the commercial products, and includes access
control configuration for firewalls and routers, Unix and Windows operating systems, as well as
databases or for web-access. Some products such as Tivoli’s and Computer Associates’ are
focusing on enterprise-level management of security for e-commerce applications and support role-

based management of user access rights.

www.manaraa.com

http://www-dse.doc.ic.ac.uk/Research/policies

Section 2.5. Background Work 55

2.5 Background Work

The work described in the following chapters relies heavily on concepts, tools and techniques in
policy management developed at Imperial College during past years. This section aims to describe
the concepts on which this thesis relies. It is by no means extensive or complete in its description,
restricting its scope to those concepts that are fundamental in the design of the policy framework

presented in this thesis, and necessary for the understanding of what follows.

2.5.1 Domains

In large-scale systems it is not practical to specify policies for individual objects and so there is a
need to be able to group objects to which a policy applies [Sloman et al. 1994a]. For example, a
bandwidth management policy may apply to all routers within a particular region or of a particular
type. An authorisation policy may specify that all members of a department have access to a
particular service. Domains provide a means of grouping objects to which policies apply and can
be used to partition the objects in a large system according to geographical boundaries, object type,
responsibility and authority or for the convenience of human managers [Sloman et al. 1994a;
Sloman 1994b]. The benefits of the domain-based approach are twofold: i) a policy applying to a
domain will propagate to its sub-domains thus applying to large numbers of objects and providing
scalability and, i) by moving an object from one domain to another its policies will be
automatically replaced with those applying to the new domain, without the need to modify the

policies or manually manage the association between policy and managed objects.

Membership of a domain is explicit and not defined in terms of a predicate on object attributes. A
domain does not encapsulate the objects it contains but merely holds references to object interfaces,
and it is thus very similar in concept to a file system directory but may hold references to any type
of object, including a person. A domain, which is a member of another domain, is called a sub-
domain of the parent domain. A sub-domain is not a subset of the parent domain, in that an object
included in a sub-domain is not a direct member of the parent domain, but is an indirect member,
c.f. a file in a sub-directory is not a direct member of a parent directory. An object or sub-domain
may be a member of multiple parent domains. For example, in Figure 2.8 sub-domain staff is

member of both academic and employees, which therefore overlap.

Path names are used to identify domains, e.g., domain szaff can be referred to as /engineering-
dept/academic/staff Or /engineering-dept/employees/staff as an object may have different local
names with multiple parent domains, where “/> is used as a delimiter for domain path names.
Policies normally propagate to members of sub-domains, so a policy applying to domain

/engineering-dept/academic/resources Will also apply to members of domains /engineering-

www.manaraa.com

56 Chapter 2. Background and Related Work

dept/academic/resources/servers and /engineering-dept/academic/resources/printers. Domain
scope expressions can be used to combine domains to form a set of objects for applying a policy,
using union, intersection and difference operators, e.g., a scope expression @/engineering-
dept/employees/secretary + @/engineering-dept/employees/admin would apply to members of both
domains and @/engineering-dept/academic ™ @/engineering-dept/employees applies only to the
direct and indirect members of the overlap between the two domains. The ‘@’ symbol selects all
non-domain objects in nested domains. In this thesis, the domain concepts are used unchanged
apart from the semantics of some of the unary operators (e.g. ‘@’) which are slightly modified

from the original semantics given in [Marriott 1997] (see Section 3.2).

engineering dept

[| (resources N
academic employees —
| | printers
| B | P
resources staff admin secretary servers
=l
printers computing ... civil eng

accounts
f .

E) I file

R U

red grey fred alice

Figure 2.8 Graphical display of a domain structure

Domain Browser

The domain browser [Tonouchi 2001] provides a common user interface for all aspects of an
integrated management environment. It can be used to group or select objects for applying policy,
to monitor them or to perform management operations, although the current implementation only
supports policy management. The domain browser reads data from the domain service and provides
a graphical tree-structured view of the data. Administrators can use the domain browser to manage
the domain structure, group objects into domains to apply a common policy, modify or create new

objects. Objects can represent users, roles, network components or manager agents.

The domain structure can be very large, both in terms of number of objects within a domain as well
as depth of the hierarchy. The domain browser implementation adopts a hyperbolic tree-mapping
algorithm [Lamping et al. 1995], which allows the display of large numbers of nodes while
providing effective navigation of the hierarchy (see Figure 2.9). In addition, the hyperbolic view
allows the domain browser to display any part of the tree uniformly. This gives users a better feel

of the entire domain structure, making it easier to perceive the context.

www.manaraa.com

Section 2.5. Background Work 57

T T e T et s bor 1.3 Foreare b ol
D Qi eb e B Hep
| El\.n—-l-.rull I] Lo e LR T e T Feei el
rrliHlH'DLM" 7 Lo dpan LR L P el e
L L p -
g s ek e mib | MR pee Cormpliasea chinsa=sc ok,
e e T) g
- = .)
_-I_I- _ ‘.:I:I"r-.rl.ulx"l""
1 - = i T
= 1 o = b ‘__-“‘ - ey] B
. Pt [l LT b
_ = == S
~ e g e [—
T‘: :- 4 = L =3 [LL L e [T A P
e
- = | L
i = iy =t s =1
e i) e
. | i [P— ooy pakiren -l A ——
- (1
o ke
o T — wesecfiinm
Fiaeg - ma T e
el = i}
B = #ilapnarasy
. Y,

Figure 2.9 Domain browser

Navigation is realised by moving the domain tree around the hyperbolic plane. Objects nearer to
the centre of the display are enlarged and come into focus. For example, an administrator can focus
on the policies sub-tree of the domain structure by selecting the /managementinfo/pol sub-tree and
dragging it near the centre of the viewer, as shown on the right side of Figure 2.9. Two
implementations of the domain browser with the same API are available: one uses a program
module developed at Imperial College, and the other uses the Inxight Star Tree Software
Development Kit [Inxight Software Inc. 2001]. Although the current version uses LDAP directories
as the information repository, the browser implementation is not dependent on LDAP and data can

be loaded from other sources as well.

2.5.2 Policy Concepts

Separating policies from the managers which interpret them, permits modifying policies to change
the behaviour and strategy of the management system without recoding the managers. The
management system can thus adapt to changing requirements by disabling policies or replacing old
policies with new ones without shutting the system down. Work at Imperial College concentrates
on two types of policies: authorisation policies which specify what activities a subject is permitted
or forbidden to perform on a set of target objects and obligation policies which specify what
activities a subject must or must not do to a set of target objects [Sloman 1994b]. Policies within a
system are specified for domains of objects. By default a policy propagates and applies to all direct
and indirect members of a domain although this propagation can optionally be disabled. Policies
establish a relationship between the subjects that perform the operations and the rarget objects on

which the operations are performed. The subjects interpret obligation policies, and authorisation

www.manaraa.com

58 Chapter 2. Background and Related Work

policies are enforced by access control components on the target host. Note that subjects can refer
to human managers, automated managers or any entity initiating operations within the system.
Managers that are subjects for a set of policies may in turn, be managed by other managers

according to another set of policies and thus become target managed objects.

Notation for Specifying Policies

In this section we give an overview, of the notation used to specify policies [Marriott et al. 1996;
Marriott 1997]. The notation is essentially aimed at specifying policies which are interpreted by
automated agents, but can also be used to specify high-level abstract policies or goals that could
only be interpreted by humans. The policies are interpreted rather than compiled into the code of
agents, so can be changed dynamically. The notation is precise and can be analysed for conflicts

using tools, but it is not based on a well-known logic.

Authorisation policies define what activities a subject can perform on a set of target objects and are
essentially access control policies to protect resources from unauthorised access. Constraints can be
specified to limit the applicability of both authorisation and obligation policies based on time or

values of the attributes of the objects to which the policy refers.

x1 A+ @project-managers { defer(); activate() } x: @tasks/nodification_requests
when (x.status == approved)

Project managers are authorised to defer or activate modification requests that have been approved. The ;" is used to
separate the permitted actions. Note the use of the constraint to limit the scope of applicability of the policy to objects in
the target domain with status = approved.

X2 A @test-engineers { commit(); edit() } /repository/db
when (20:00 < time) or (time < 07:00)

Test engineers are forbidden to commit new changes or edit the repository database between the hours of 8 pm and 7 am
the following day i.e. a time-based constraint. The ;" is used to separate the forbidden actions. Note, that if there is a
default negative authorisation policy, whereby all actions are forbidden unless explicitly authorized, the negative
authorization in x2 could be converted into a positive authorisation with a constraint when 07:00 < time< 20:00.

Obligation policies define what activities a manager or agent must or must not perform on a set of

target objects. Positive obligation policies are triggered by events.

x3 O+ on new_request(nri) @projectl/analysts { investigate(nri); propose_solution(nri) }
/ proj ect 2/ tasks/ nodi fi cati on_requests;

This positive obligation policy is triggered by an external event signaling that a new modification request has been issued
and obliges the analysts to investigate and then propose a solution to the modification request. The “;’ is used to separate
a sequence of actions in an obligation policy.

x4 O+ at 01:00 /archiver { backup () } /repository/db

This positive obligation policy is triggered by an internal event — every night at 1 am — for the archiver to backup the
repository database.

x5 O n:@test-engineers { D scloseTestResults() } @analysts + @devel opers
when n.testing_sequence == in-progress

This negative obligation policy specifies that test engineers must not disclose test results to analysts or developers when
the testing sequence being performed by that subject is still in progress, i.e., a constraint based on the state of subjects.

www.manaraa.com

Section 2.5. Background Work 59

Negative obligation policies are not equivalent to negative authorisations. The main difference lies
in the fact that obligation policies are interpreted by subjects while authorisation policies are
interpreted by access control components on the target host. Thus, negative obligation policies act

as subject based filters specifying actions that managers ‘must refrain’ from performing.

The general format of a policy is given below with optional attributes within brackets (the braces
and semicolon are the main syntactic separators). Some attributes of a policy such as trigger,
subject, action, target or constraint may be comments (e.g. /* this is a comment */), in which case

the policy is considered high-level and not able to be directly interpreted.

identifier node [trigger] subject ‘{’ action '}’ target [constraint] [exception] [parent]
[child] [xref] ;"

The identifier is a label used to refer to the policy. The mode of the policy distinguishes between
positive obligations (O+), negative obligations (O-), positive authorisations (A+) and negative
authorisations (A-). The trigger only applies to positive obligation policies. It can specify an
internal timer event using an at clause, as in x4 above, or an external event using an on clause, as in
x3 above, where the new_request event passes a parameter (mri) to the agent. Examples of external
events are a temperature exceeding a threshold or a component failing. These are detected by a
monitoring service. Marriott’s policy notation specifies only simple events as a generalised
monitoring service can be used to combine event sequences to generate simple events [Mansouri-
Samani et al. 1997].

The subject of a policy, defined in terms of a domain scope expression, specifies the human or
automated managers and agents to which the policies apply and which interpret obligation policies.
The target of a policy, also defined in terms of a domain scope expression, specifies the objects on

which actions are to be performed.

The actions specify what must be performed for obligations and what is permitted for
authorisations. It consists of method invocations or a comment and may list different methods for
different object types. Multiple actions in an authorisation policy indicate the set of actions or
operations which are permitted or forbidden. Multiple actions in a positive obligation policy imply

that they are performed sequentially after the policy is triggered.

The constraint, defined by the when clause, limits the applicability of a policy, e.g. to a particular
time period as in policy x2 above, or making it valid after a particular date (e.g. when time >
1/June/1999). In addition, the constraint could be based on attribute values of the subject such (as
in policy x5 above) or target objects. In x3, the label », prepended to the subject, is referenced in

the constraint to indicate a subject attribute. Constraints must be evaluated every time an obligation

www.manaraa.com

60 Chapter 2. Background and Related Work

policy is triggered or authorisation policy is checked to see whether the policy still applies as

attribute values may change.

An action within an obligation policy may result in an operation on a remote target object. This
could fail due to remote system or network failure so an exception mechanism is provided for
positive obligations to permit the specification of alternative actions to cater for failures which may

arise in any distributed system.

High-level abstract policies can be refined into implementable policies. In order to record this
hierarchy, policies automatically contain references to their parent and children policies. In
addition, a cross reference (xref) from one policy to another can be inserted manually, e.g., so that

an obligation policy can indicate the authorisation policies granting permission for its activities.

Meta Policies

Meta-policies are policies about permitted policies, and can be used to specify application-specific
constraints on groups of authorisation and obligation policies e.g., the same person must not
approve payment and sign the check. There has been some experimentation for specifying meta-
policies using Prolog [Lupu 1998]. The following is an example of the separation of duties
principle specifying that "No two policies can allow the same managers (subjects) to authorise a

payment and sign a payment check”, written in Prolog.

0 P1,P2 O /policies/accounting
P1. subjects n P2.subjects O
(authorise O Pl.actions) O (sign O P2.actions) O
(paynent O Pl.targets) O (cheque O P2.targets) O
(P1.node = P2.npde = At) = P1 conflicts_with P2

2.5.3 Role-based Management Framework

A role-based framework for management of distributed systems has been defined [Lupu 1998]
based on the concepts already presented in this section. This framework takes into account
organisational structure to partition policy specification. Organisational structure is often specified
in terms of organisational positions such as regional, site or departmental network manager, service
administrator, service operator, company vice-president. Specifying organisational policies for
people in terms of role-positions rather than persons, permits the assignment of a new person to the
position without re-specifying the policies referring to the duties and authorisations of that position.
The tasks and responsibilities corresponding to the position are grouped into a role associated with
the position (which is essentially a static concept in the organisation). The position could
correspond to a manager or a user of a network or services. A role is thus the position, the set of
authorisation policies defining the rights for that position and the set of obligation policies defining

the duties of that position. These definitions correspond to the concepts of classic role theory,

www.manaraa.com

Section 2.5. Background Work 61

which postulates that individuals occupy positions inside an organisation and associated with the
position are a set of activities (including the required interactions) that constitute the role of that

position.

Organisational positions can be represented as domains and a role is considered to be the set of
authorisation and obligation policies with the position domain as subject (as illustrated in the top of

Figure 2.10). A person or automated agent can then be assigned to or removed from the position

domain without changing the policies as explained in [Lupu et al. 1997b].

& Target Managed

fred Role A

Objects

~

1

Authorisation &
Obligation policies

policy subject target

auth+
T *
AN
' AN

||ﬂl

o

Adapter
Object

Relationship } \\
Authorisation & N concurrency
Obligation policies - —— constraints
P meta policies
Interaction Protocols] s
| Pid
e
e
v 7
e
Role B P

PD
User Role
Agent

Figure 2.10 The role model

URD = User Representation Domain
PD = Position Domain

The role-based framework also contains relationships to model the ways roles of an organisation
can be related to each other. A relationship may group two or more roles and specifies the rights
and duties of the related parties within its scope (i.e. as authorisation and obligation policies), as
well as the valid interactions between the managers acting in those roles in order to achieve their
tasks, share information and agree on their commitments. Lupu defines a rule-based notation for
the specification of interaction protocols between the managers assigned to roles. The notation aims
to regulate the exchange of messages and enables the protocols to be changed at runtime without

the need to recompile the agents.

The definition of roles and relationships as groups of policies allows the specification of global
constraints on the set of policies specified in roles and their relationships. These constraints can be
concurrency constraints or a variety of application-specific constraints specified as meta-policies.
Lupu suggests object-oriented extensions to the specification of roles and relationships to enable
reuse of specifications. Roles and relationships can be specified as classes which contain policy

templates instead of actual policy instances. Policy templates are parameterised policies that may

www.manaraa.com

62 Chapter 2. Background and Related Work

have one or more elements unspecified or abstract. Reuse of role and relationship specifications is
also achieved through inheritance. Inheritance allows a role class to be specialised with particular
rights and duties and enables incremental refinement of the organisational structure for specific

management needs.

The role-based management model summarised above differs from the RBAC models in two
important ways [Lupu et al. 1997a]: (i) it introduces obligation policies to model the duties of the
managers assigned to roles, which is not considered within RBAC models, (ii) it uses inheritance as
an implementation of specialisation of role classes, whereas in RBAC models inheritance is used as
a means of reusing permissions. In RBAC, inheritance is between role instances, which limits the
ability to reuse role specifications by parameterising roles with the targets of the policies assigned

to the role.

2.5.4 Problems

The policy specification described above suffers from problems a number of which are addressed

by the work presented in this thesis.

< An important issue is that of providing a uniform language for specifying both basic and
role-based policies. The work on role-based management follows a modelling approach and
does not include a notation for specifying roles or relationships. However, it suggests some
object-oriented extensions to the specification which can be explored further. Note that the
use of classes and templates discussed in [Lupu 1998] ignores typing issues, and is rather
ad-hoc and inconsistent.

« The notation described above does not provide any way of grouping policies for reusability.
There is also a need for shared declarations for groups of policies.

e There was no support for specifying delegation policies discussed in [Yialelis 1996]. A
delegation policy should allow the administrators to specify: (i) which access rights can be
delegated, (ii) who can delegate these access rights (possible grantors), (iii) to whom the
access rights can be delegated (possible grantees) and (iv) special restrictions on delegation,
such as time constraints, maximum delegation period, maximum number of delegation
hops, etc.

* There were a number of different types of constraints which apply to policy, and at different
levels of a specification. A single notation for constraints about a set of policies (meta-
policies), constraints on the activities of a policy (specified within a policy) and constraints
which apply to roles e.g. a person may not activate role A and role B at the same time,

should be achieved.

www.manaraa.com

Section 2.6. Conclusions 63

e The notion of a positive obligation policy allowed only simple events as triggers, because it
is assumed a separate event specification tool will be used to generate simple events from
complex combinations of events. However, this has proven cumbersome and there is a need
to extend the notation to cope with defining event sequence compositions as triggers.

¢ The described notation has a rather simple use of variables whereby a constraint can select a
subset of the subjects or targets to limit the applicability of the policy as in example policies
xI and x5 in Section 2.5.2, but a more generalised solution to the use of variables and
parameters is needed. For example, a parameter received via an event should be useable
within an action or constraint, or a variable which reflects current resource usage within a
policy agent should be accessible within a policy.

e The described notation assumes actions are pre-loaded into policy agents and are similar to
internal methods invoked from the policy level. An obligation policy interpreter would have
actions predefined in order to tailor it to a particular application e.g. security, fault or
configuration management. However, if an action is specified in an interpreted language
such as Java, it could also be dynamically loaded into an agent in order to change or extend
its functionality. An action script could specify conditional execution of sub-actions so that

the execution of a sub-action could be dependent on the result of a previous one.

2.6 Conclusions

The area of policy specification for distributed systems management received considerable
attention in many different areas of management. Although many approaches exist that address
security and various management issues, there is a lack of policy languages that adequately cover
both security and management policy specification, with built-in scalability features to enable

enterprise-level management and re-use of policy specifications in different situations.

The policy specification languages can be divided into two main categories: those concentrating on
security specification with emphasis on role-based access control, and those specifying the actions
that must be executed in response to events which we term management policies. Security
specification derives from work on formal security models and thus a lot of the approaches in this
area are formal logic languages concentrating on proving properties of the security system.
Although formal specifications are particularly useful in the area of security because they allow
reasoning about the specified policies to enable the detection of conflicts or inconsistencies, they
are generally non-intuitive and they cannot be directly translated into an implementation. High-
level security policy languages concentrate more on providing the end-user with a tool for

expressing policies in an environment-independent way. Recent work on trust specification

www.manaraa.com

64 Chapter 2. Background and Related Work

combines authorisation with authentication based on the certificates of users instead of their

identities.

Management policy specification covers the areas of configuration management, network
management and enterprise modelling and follows an event-condition-action paradigm. Most of the
work on network policy management is influenced by the if-condition-then-action rule-based
approach advocated by the IETF, which concentrates on QoS specification in IP networks. A lot of
vendors are implementing policy-based management systems following the IETF framework where
policies are specified using graphical tools, translated into an LDAP schema and stored in

distributed policy repositories.

A lot of the work on policy-based management was triggered by the work done at Imperial College
since the early 1990s. We have provided a more detailed description of this work separately from
the rest of the survey, and concentrated on the concepts and techniques on which this thesis relies.
We identified issues that remain to be resolved within the past work at Imperial College, and which

motivated many of the ideas presented in the following chapters.

www.manaraa.com

Chapter 3

Basic Policy Constructs

This chapter describes the basic features of the Ponder policy specification language. A description
of the language can be found in [Damianou et al. 2001], and [Damianou et al. 2000b] is a reference
guide. Ponder is declarative, and borrows features from the object-oriented world. The language is
flexible, expressive and extensible to cover the wide range of requirements implied by the current
distributed systems paradigms as identified in the list presented in Section 1.2. This and the next
two chapters will concentrate on the policy specification language and its formal semantics, which
is the centre of our management architecture. In this chapter we present only the basic policy
features. Structures used to compose basic policies, and additional features of the language are

presented in the next chapter.

We present the language syntax through simple examples of its use. We use the following
conventions to present the syntax in this and the following chapter: Everything in bold is a
language keyword in the figures presenting the syntax, including symbols. Choices are enclosed in
round brackets () separated by |, optional elements are specified with square brackets [] and
repetition is specified with braces { }. Some features of the language are left out at this stage in
order to make the discussion clearer. The complete syntax of the language is written in SableCC
[Gagnon 1998] and is available in Appendix B. SableCC can be used to specify LALR(1)
grammars which are a subset of LR(1) grammars and thus a subset of the context-free grammars
that can be specified using BNF. The concrete syntax of the language is also described using EBNF
in [Damianou et al. 2000b].

3.1 Information Model

Before describing the various elements of the language and its syntax, we first define the model we
will use to represent the information that is relevant to our management framework. This includes
policies as well as objects which participate in the management process either as targets or as
subjects of policies. Figure 3.1 shows a partial class diagram for the information model we define
in our framework. The diagram is partial because composite policy classes are not included; these

will be presented in Chapter 4. We define everything as a managed object (ManagedObject). This

65

www.manaraa.com

66 Chapter 3. Basic Policy Constructs

includes domains, policies and enforcement components. A domain may include any number of
managed objects, for which the domain is the parent. Basic policies are defined over sets of objects
formed by applying set operations, such as union, intersection and difference to the objects within
domains. Subjects and targets of policies are defined in terms of domains, and this is indicated with
the dependency line in the figure. Enforcement components are responsible for the enforcement of
policies in the runtime management system. For authorisation policies these components are access
controllers and play the role of a reference monitor at the targets’ host. Policy management
components are automated components responsible for enforcing subject based (obligation and
refrain) policies. Basic policies are distributed to the enforcement components, hence the usage
path line between the enforcement component class and the basic policy class. Details of the

enforcement architecture will be presented in Chapter 7.

child | ManagedObject

T

W \

1 Domain Policy enforces Enforcement Component
o]
|
I
parent ZO
} subject/ A } Zﬁ
} target/ }
| grantee I
} BasicPolicy } ManagementComponent AccessController
Authorisation Delegation Oblig Refrain
assoc.
assoc. policy
é policy
Auth- Auth+ Deleg- Deleg+

Figure 3.1 Basic policy object class hierarchy

The various subclasses of the policy class shown in the figure will be defined in the discussion of
the basic policy features of the language that follows. Note that all of the policy classes are
abstract. Users implicitly define their own concrete subclasses when they define a new basic policy
(e.g. a new positive authorisation policy). Basic policies can be defined as parameterised types
which can then be instantiated, in which case these are actually subclasses of the corresponding
base class of the information model. As a shortcut a user can also define a single policy instance
directly. In that case, this corresponds to the instantiation of an unnamed policy type with no

parameters. We define the semantics of the language in Chapter 5.

We assume that all policies relate to objects with interfaces defined in terms of methods using an
interface definition language. We use the term subject to refer to users, principals or automated
manager components, which have management responsibility. A subject accesses target objects

(resources or service providers), by invoking methods visible on the target’s interface. The

www.manaraa.com

Section 3.2. Domain Scope Expressions 67

granularity of protection for access control in Ponder is thus an interface method. Authorisations
refer to methods in contrast to elementary access. References to both subject and target objects are
stored within domains maintained by a domain service. Domains provide a means of grouping
objects to which policies apply and can be used to partition the objects in a large system according
to geographical boundaries, object type, responsibility and authority or for the convenience of
human managers and were described in Section 2.5.1. This facilitates policy specification for large-

scale systems with millions of objects.

3.2 Domain Scope Expressions

Domain scope expressions (DSE) (introduced in [Yialelis 1996]) are used to combine domains to
form a set of objects for applying a policy to (i.e. for the specification of subjects/targets of
policies). We modify DSEs and extend them with domain-object library calls, to enhance their
usage. Explanation of domains and their use in partitioning the objects in the system for
management purposes has been described earlier in Section 2.5.1. The set of objects (i.e. the
domain scope expression) to which a policy applies is evaluated each time that the policy is
interpreted because domain membership can change dynamically. Note: in practice,
implementation optimisations are used to minimise run-time evaluation. We cover details of the

deployment architecture in Chapter 7.

Figure 3.2 shows the syntax we adopt for domain scope expressions in this thesis, and in Table 3.1
we explain the different domain scope expression operators. The set union, difference and
intersection operators have equal precedence and are evaluated left to right. The unary operators “*’
and ‘@’ have higher precedence. Note that the semantics of the unary operators have been

modified from the original semantics given in [Marriott 1997].

donmi n_scope_expressi on =
donmi n_obj ect
{ domai n_obj ect }
* [int_val ue] domai n_object
@1[int_value] domai n_object
(dommi n_scope_expression)
donmi n_scope_expression (+ | - | ~) domai n_scope_expression

donmi n_object := (identifier | path) (. actionCall) | (-> featureCall) } ;

Figure 3.2 Domain scope expressions syntax

featureCall is an action call on collections defined in the OCL version 3 specification. It is included
in domain scope expressions to allow the selection of subsets for subject and target specifications,

as we will show in examples presented in this chapter.

Domain scope expressions are composed of domain-objects, which can be:
e Anpath

www.manaraa.com

68 Chapter 3. Basic Policy Constructs

« A name defined within scope, of type domain or set, that is assigned a domain path
¢ A domain library call on a name of type domain declared within scope; such a call evaluates
to a domain. E.g. myDomain.get(“b/c”’) evaluates to the domain b/c relative to the domain

already assigned to the name myDomain.

Syntax Explanation

Returns all non-domain members of the domain-object ¢ and all distinct non-domain members of all
nested sub-domains recursively traversed all levels down the domain structure.

@ If 4 is a domain, returns a set that contains all non-domain members of the domain. The integer
constant n specifies that the domain structure is to be traversed n levels down, e.g. n = 1 specifies
only direct members, whereas n = 2 would include distinct members of the sub-domains of d also. If
n is omitted, all nested sub-domains are recursively traversed.

If d is a non-domain object, returns a set that contains the non-domain object.

:2d Returns a set that contains all non-domain and all domain members of the domain d, including the
domain itself. The integer constant n specifies that the domain structure is to be traversed n levels
down. If n is omitted, all nested sub-domains are recursively traversed.

{c} Returns a set that contains the object c.

a+b Returns a set that contains all distinct members of a and 5 (Set Union).

a"b Returns a set that contains only members that are in both ¢ and in b (Set Intersection)

a-b

Returns a set that contains members of a that are not also in 5 (Set difference)

Table 3.1 Domain scope expressions

3.3 Access Control Policies

Access control is concerned with limiting the activity of legitimate users who have been
successfully authenticated [Abrams 1993; Sandhu et al. 1994]. Our emphasis has been on non-
discretionary access control (as defined in [Abrams 1993]), where administrators have the authority
to specify security policies that are enforced by the access control system. Delegation and
propagation of authority are permitted only within the scope defined by the security policy.
However, this does not exclude the use of our language to specify discretionary or mandatory
security policies. Ponder supports access control by providing authorisation, delegation, and
information filtering policies as described below. We use the term access control policies to refer
to all of these types of policies. We assume that policies relate to objects with interfaces defined in
terms of methods using an interface definition language. The granularity of protection in Ponder is

thus an interface method in contrast to elementary access (e.g. read, write, append).

3.3.1 Authorisation Policies

Access rights (often called permissions or privileges) in Ponder are specified using authorisation
policies. Authorisation policies define what activities a member of the subject domain can perform

on the set of objects in the target domain in terms of interface method calls. A positive

www.manaraa.com

Section 3.3. Access Control Policies 69

authorisation policy defines the actions that subjects are permitted to perform on target objects. A
negative authorisation policy specifies the actions that subjects are forbidden to perform on target
objects. Authorisation policies are implemented on the target host by an access control enforcement

component (an access controller), traditionally called a reference monitor.

inst (auth+ | auth—) policyNane {
subject [<type>] domain-Scope-Expression ;
target [<type>] donai n- Scope- Expression ;
action action-list ;
[when constraint-Expression ;]
}

Figure 3.3 Authorisation Policy Syntax

The syntax of an authorisation policy is shown in Figure 3.3. Constraints are optional in all types of
policies and can be specified to limit the applicability of policies based on time or values of the
attributes of the objects to which the policy refers. Constraints are discussed in detail in Section
3.3.2. Elements of a policy can be specified in any order. Note that the subject and target elements
can optionally include the interface specification reference within the specified domain-scope-
expression on which the policy applies. This can be used to check that the objects do support the
specified operations or to locate the interface specification. The name of a policy can be specified

as a path, thus identifying the domain into which the policy will be stored.

inst auth+ switchProfileOps {

subj ect / Net wor KAdmi n
target <ProfileT> /Nregion/swtches ;
action I oad(), renove(), enable(), disable() ;

}

Members of the NetworkAdmin domain are authorised to load, remove, enable or disable objects of type ProfileT in the
Nregion/switches domain.

i nst auth- /negativeAuth/testRouters ({
subj ect /testEngineers/trainee ;
action performance_test() ;
target /routers ;

}

Trainee test engineers are forbidden to perform performance tests on routers. The policy is stored within the
/negativeAuth domain.

The above examples show direct declaration of policy instances using the keyword inst. The
language provides reuse by supporting the definition of policy types to which any policy element
can be passed as formal parameter. Multiple instances can then be created and tailored for the
specific environment by passing actual parameters. Figure 3.4 shows the syntax for authorisation

policy types and instantiations.

type (auth+ | auth—) policyType (formal Paraneters) {
subj ect [<type>] donmin-Scope-Expression ;

target [<type>] donai n- Scope- Expression ;
action action-list ;
[when constraint-Expression ;]

}

inst (auth+ | auth—) policyNane = policyType(actual Paraneters);

Figure 3.4 Authorisation Types and Instantiations

www.manaraa.com

70 Chapter 3. Basic Policy Constructs

The authorisation policy switchProfileOps shown previously can be specified as a type with the

subject and target given as parameters as shown in the following example.

type auth+ Profil eQpsT (subject s, target <ProfileT>t) {
action |load(), remove(), enable(), disable() ;
}

inst auth+ switchProfileOps = Profil eOpsT(/ NetworkAdmi ns, /Nregion/sw tches);
inst auth+ routersProfileCps = Profil eCpsT(/ QSAdmi ns, /Nregion/routers);

The two instances allow members of /NetworkAdmins and /QoSAdmins to execute the actions on profile objects within
the /Nregion/switches and /Nregion/routers domains respectively.

The ProfileOpsT authorisation policy type specifies the subject and target elements of the policy as
formal parameters. This is a shortcut for specifying them in the body of the policy type. The

following type specification is the same as ProfileOpsT.

type auth+ Profil eQps2T (set s, set t) {

subj ect S;
target <ProfileT> t;
action I oad(), renove(), enable(), disable() ;

}
The set type is used for sets of objects and is type compatible with a DSE since DSESs always result

in sets of objects when evaluated at runtime.

It can be argued that the specification of negative authorisation policies complicates the
enforcement of authorisation in a system. However, there are reasons to support the provision for
negative authorisation policies. Administrators often express high-level access control in terms of
both positive and negative policies; retaining the natural way people express policies is important
and provides greater flexibility. Negative authorisation policies can also be used to temporarily
remove access rights from subjects if the need arises. In addition, many systems support negative
access rights (e.g., Windows NT/2000). The existence of both positive and negative authorisation
policies in a system may result in conflicts. Although this adds the need to analyse policies for
conflict detection, this kind of conflict may indicate potentially unforeseen problems with the
specification. For a discussion on conflicts between policies see [Lupu et al. 1999]. The usefulness
of negative access rights for discretionary access control policies, has been acknowledged by other

researchers [Samarati et al. 2000].

3.3.2 Basic Policy Constraints

An important element of each policy is the set of conditions under which the policy is valid. This
information must be explicit in the specification of the policy. A subset of the Object Constraint
Language (OCL) [OMG 1999b] is used to specify constraints in Ponder. OCL is simple to
understand and use, and it is declarative — each OCL expression is conceptually atomic and so the
state of the objects in the system cannot change during evaluation. Basic policy constraints limit the

applicability of a policy and are expressed in terms of a predicate, which must evaluate to true for

www.manaraa.com

Section 3.3. Access Control Policies 71

the policy to apply. Policy constraints can be considered as conjunctions of basic constraints, which
can be either time or state based. The analysis of a set of policies can then be substantially
improved since time-based constraints can be compared for possible overlap and state based
constraints can be either simultaneously satisfied or mutually exclusive if they relate to states of the
same system component. We separate the different types of constraints based on:

» Subject/target state — constraints based on the object state as reflected in terms of attributes
at the object interface.

» Action/event parameters — constraints based on event parameter values in obligations or
action parameter values in authorisations or refrains. We look at obligation and refrain
policies in Section 3.4.

e Time — constraints which specify the validity periods for the policy. A time library object is

provided with the language to specify time constraints.

In the specification of constraints, Time is a predefined object on which operations such as
between, before or after can be invoked related to the current time. The policy compiler can resolve
the different types of constraints at compile time and separate the constraints in order to aid in the
analysability of policies. More information on the runtime representation of policy objects and the

implementation of the compiler are described later (Chapter 6).

inst auth- testRouters {
subject s =/testEngineers;
action performance_test();
target /routers;
when s.role = "trainee";

}

TestEngineers cannot execute performance tests on routers if they are trainee testEngineers. The role attribute of the
subject is used in the constraint.

i nst auth+ videoConfl {
subject /Agroup + /Bgroup;
target USASt af f — NYgroup;
action Vi deoConf (BW Priority);
when Ti ne. bet ween("1600", "1800") and (Priority > 2);

}

Members of Agroup plus Bgroup can set up a video conference with USA staff except the New York group. The
constraint of the policy is composite. The time-based constraint limits the policy to apply between 4:00pm and 6:00pm
and the action constraint specifies that the policy is valid only if the priority parameter (the 2™ parameter of the action) is
greater than 2.

3.3.3 Information Filtering

Filtering policies are needed to transform the values of the input parameters in an action and the
information returned from the action. For example, a location service might only permit access to
detailed location information, such as a person is in a specific room, to users within the department.
External users can only determine whether a person is at work or not. Some databases support

similar concepts of ‘views’ onto selective information within records — for example a payroll clerk

www.manaraa.com

72 Chapter 3. Basic Policy Constructs

is only permitted to read personnel records of employees below a particular grade. Positive
authorisation policies may include filters to transform input parameters associated with their
actions, based on attributes of the subject or target or on system parameters (e.g., time). In many
cases it is not practical to provide different operations as a means of selecting the information.
Although these are a form of authorisation policy they differ from the normal ones in that it is not
possible for an external authorisation agent to make an access control decision based on whether or
not an operation, specified at the interface to the target object, is permitted. Essentially the
operation has to be performed and then a decision made on whether to allow results to be returned
to the subject or whether the results need to be transformed. Filters can only be applied to positive

authorisation actions.

actionNane { filter }

filter = [if condition] { { (
in paraneterNane = expression ; |
result = expression ;) } }

Figure 3.5 Filters on Positive Authorisation Actions

Every action can be associated with a number of filter expressions (see Figure 3.5). Each filter
contains an optional condition under which the filter is applied. If the condition evaluates to true,
then the transformations (the assignment statements in the body of the filter) are executed. The in
keyword is used to indicate an input parameter of the action on which the filter is specified; result

is used to transform the return value of the action.

inst auth+ filterl {
subj ect /Agroup + /Bgroup ;
target USASt af f — Nygroup ;
action VideoConf(BW Priority)
if (Time.after("1900")) {in BW3; in Priority = 1; }
{ in BW2 ; in Priority=3; } [/ default filter
}

Members of Agroup plus Bgroup can set up a video conference with USA staff except the New York group. If the time is
later than 7:00pm then the video conference takes parameters: bandwidth = 3 Mb/s, priority = 1. Otherwise the filter
restricts the parameters to bandwidth = 2 Mb/s, priority = 3.

The following is a more elaborate example. Consider a hypothetical class-diagram of the
information stored in a departmental server shown in Figure 3.6. The getEmp(ssn) method returns
an Employee object given its ssn-number. Assume there is an authorisation policy authorising
subjects to execute the method getEmp(ssn) on objects of type Department on the departmental file
server. Depending on the subject of the authorisation, there is a filter that allows the subject to see
only part of the information returned:

e The general manager can see all of the information.

* The departmental manager cannot see the agenda of the employee.

< Another fellow employee cannot see the salary, his agenda and the budget of the projects to

which the employee is assigned.

www.manaraa.com

Section 3.3. Access Control Policies

73

e A person outside the organisation can see only the name, project names and meeting topics

of the employee.

Meeting

Expense

Empl
Department mployee
I -name Agenda
:empoyees L+ s
_;esgurces - salary
) un St -agenda
reports -meetings
+getEmp() -expenses
-projects
1.* 1.*
Fund
1.* 1.x
Report 1% Project
Resource -pName
-duration 1.%
-budget
-status
-participants

Figure 3.6 Partial departmental information class diagram
Here are the authorisation policies to specify this.

i nst aut h+ Gwet Enpl oyeeAut h {
subj ect General _Manager;
target Dept Fi |l e_Server;
action getEnmp(ssn);

i nst aut h+ DVEnpl oyeeAut h {
subj ect Dept_Manager;
target Dept Fi | e_Server;
action getEnp(ssn) {result = result->reject(agenda);};

i nst aut h+ enpl oyeeAut h {
domain e = /enpl oyees;
donmai n other = /external;

subject e + other;
target Dept Fi | e_Server;

action get Enp(ssn)
if (subject =e) {

result = reject(result, salary, agenda, projects.budget);

if (subject <> e) {

result = select(result, name, project.pnanme, neeting.topic);

}; /1 getEmp
} /1 enpl oyeeAut h

Note the use of the functions reject and select which reject or select respectively, certain attributes

from their first parameter, in this case the result of the action execution. We assume that these

actions are available as part of a standard library.

3.3.4 Delegation Policies

Delegation is often used in access control systems to cater for the temporary transfer of access

rights. However the ability of a user to delegate access rights to another must be tightly controlled

by security policies. This requirement is critical in systems allowing cascaded delegation of access

www.manaraa.com

74 Chapter 3. Basic Policy Constructs

rights. A delegation policy permits subjects to grant privileges, which they possess (due to an
existing authorisation policy), to other subjects called grantees to perform an action on their behalf
e.g., passing read rights to a printer spooler in order to print a file. Delegation in Ponder does not
transfer access rights from grantors to grantees; grantors continue to retain their access rights after

a delegation is performed.

inst deleg+ (associated-policy-name) policyName {
grant ee [<type>] donmi n- Scope- Expression ;
[subject [<type>] dommin-Scope-Expression ;]
[target [<type>] dommin-Scope-Expression ;]
[action action-list ;]
[when constraint-Expression ;]
[valid constraint-Expression ;]
[hops int-value ; 1 }

Figure 3.7 Delegation policy syntax

A delegation policy is always associated with an authorisation policy, which specifies the access
rights that can be delegated. Negative delegation policies forbid delegation of certain actions. Note

that delegation policies are not meant to be used for assignment of rights by security administrators.

Figure 3.7 shows the syntax of a positive delegation policy. The only required part in the body of
the policy is the grantee. The rest of the parts (subject, target, action) must be subsets of those in

the associated authorisation policy; if not specified they default to those of that policy.

Constraining Delegation

Delegation constraints specify restrictions on when the delegation performed is valid, or on when a
cascaded delegation is valid. Only positive delegation policies contain delegation constraints; they
make no sense in negative delegation policies. The syntax for a negative delegation policy is thus
the same as that for a positive policy, without the valid and hops clauses, which are used to specify

delegation constraints.

Delegation constraints are:
e Time restrictions to specify the duration or the period over which the delegation should be
valid before it is revoked.
* Any arbitrary constraint based on system attributes or subject/target/grantee or action
attributes.
e Maximum number of cascading delegations allowed (maximum number of delegation hops

or levels)

The first two types of constraints are specified in the valid attribute of the delegation policy
whereas the maximum number of cascading delegations allowed is specified in the hops attribute.

See the example that follows.

www.manaraa.com

Section 3.3. Access Control Policies 75

auth+ swtichPolicyOps

/NetworkAdmins

/NRegion

switches

deleg+ delegSwitchOps
typeA
/DomainAdmins [
\ implicit auth+ policy

Figure 3.8 Delegation policy example

inst del eg+ (switchProfileOps) del egSwitchOps {
grant ee / Domai nAdmi n

target / Nregi on/ swi t ches/ typeA ;
action enabl e(), disable();
valid Ti me. duration(24) ;

}

The above delegation policy is associated with the switchProfileOps auth+ policy from Section 3.3.1. It states that the
subject of that authorisation policy (NetworkAdmin), which is implicit in this policy, can delegate the enable and disable
actions on policies from the domain /Nregion/switches/typeA to grantees in the domain /DomainAdmin. Note how the
policy restricts the target to a subset of the switchProfileOps policy target (See Figure 3.8). The valid-clause, specifies
that the delegation is only valid for 24 hours from the time of creation; after that it must be revoked.

A delegation policy specifies the authority to delegate, it does not control the actual delegation and
revocation of access rights. Delegation policies map to authorisation policies and can be
implemented as authorisations. We formalise the mapping of delegation to authorisation policies in
Chapter 5.

Cascaded Delegation

During runtime, cascaded delegation is allowed provided that both the grantor and the grantee are
in the grantee scope of the delegation policy. This is demonstrated in Figure 3.9; an authorisation
policy allows objects in the subject scope to execute actions on objects in the target scope. A
delegation policy allows objects in the subject scope to delegate the access rights assumed from

that authorisation policy to objects in the grantee scope.

subject scope target scope

delegate

cascaded
delegation

grantee scope

Figure 3.9 Cascaded delegation

When the subject s executes the delegation of access rights to an object g;, g; is automatically
given the right to also execute the delegated actions on objects in the target scope. Furthermore, g,

can delegate these access rights to another object g, within the grantee scope only. We call this

www.manaraa.com

76 Chapter 3. Basic Policy Constructs

cascaded delegation, and each cascaded execution of the delegate action counts as one delegation

hop.

Cascaded delegation can also take place at specification time. This is the case when a delegation
policy is passed as a parameter to another delegation policy. This specifies that any grantee who
has been delegated some access rights based on the first delegation policy, can delegate them

further to another grantee in a second grantee scope as specified by the second delegation policy.

war [2

passed as delegate
parameter deleg+ D, —
(associated) action-listB

deleg+ D, ag;«'(';gﬁ\:C ,jf,ac,!i9n:!i§t§,
Figure 3.10 Relation between authorisation and delegation policies
Figure 3.10 summarises the relation between authorisation and delegation policies and their
elements. The top of the figure shows a positive authorisation policy A, with subject S target T and
a list of actions action-listA, the actions S can execute on T. This is called the associated policy and
is passed as a parameter to a positive delegation policy D; which allows objects in S; to delegate
actions within the action-listB on objects in Ty, to objects in G. An actual delegation of access
rights during runtime would then create an implicit authorisation policy authorising G to execute
actions within action-listB to target objects T;. Note that the following are true: S; O S, T, O T,
action-listB O action-listA. Finally, D, can be used as the associated policy for a second delegation
policy D, authorising objects in S, to delegate actions within the action-listC on objects in T,, to

objects in G;. The following relations are also true: S, 0 G, action-listC [action-listB.

An action being delegated may have a filter attached to it, which will be executed when the action
is invoked by the grantee on the target. Delegation policies are not allowed to override filters on
delegated actions. Also, the authorisation policy from which the delegation derives access rights
may already have a constraint which limits its applicability. This constraint is taken into account
when the delegation action is executed. The grantee can only execute the action if the original
constraint of the authorisation policy from which the access rights were derived, evaluates to true.
In Section 5.4 we demonstrate the enforcement of delegation policies by mapping them to

authorisation policies, and show how the constraints are taken into account.

Examples

We use two slightly more extended examples to demonstrate the concepts of delegation policies.

Consider the following hypothetical domain structure.

www.manaraa.com

Section 3.3. Access Control Policies 77

employees servers printers

managers
bob

general departmental

a a

fred alice

Figure 3.11 A hypothetical domain structure
Suppose that the following authorisation policies are in place:

domai n /policies/del egation;

type auth+ fileAccess (subject S, target files) {
action read, wite;
} /1 fileAccess

i nst aut h+ nmanager Fi | eAccess = fil eAccess(/ Enpl oyees/ Managers, /Files/PayrollFiles);
i nst aut h+ enpl oyeeFi | eAccess = fil eAccess(/ Enpl oyees- Enpl oyees/ Manager s,
/| Files-Files/PayrollFiles);

type auth+ printAccess (subject S, target printer) {
action print;
} /1 printAccess

donai n man = / Enpl oyees/ Managers;

inst auth+ GVprintAccess = printAccess(nman/ General Managers, Printers/ColorPrinters);
i nst auth+ enpl oyeePrint Access = printAccess(/Enployees, /Printers-Printers/ColorPrinters);

inst auth+ fileServerAccess {
subj ect /Enpl oyees;
target Servers/ Fil eServer;
action *; /1 all actions
} /1 fileServerAccess

inst aut h+ printServerAccess {
subj ect Enpl oyees;
target Servers/ Print Server;

action *; /1 all actions
} /1 printServerAccess

In the above examples notice the use of the domain statements. The first changes the current
working domain. Any relative domain paths specified after this statement are consideredrelative to
the current working domain. So the policies following will all be stored under: /policies/delegation.
The default current working domain is the root /. The second domain statement declares a constant
called man and assigns it a path. This constant can then be used in the specification. More on
declaring constants for reusing specifications will be described in Section 3.5. Here are the actual

delegation policies:

i nst del eg- invalidDel egl (managerFil eAccess) {
subj ect /Enpl oyees/ Manager s/ Dept Managers ;
grant ee / Enpl oyees - /Enpl oyees/ Managers ;

}

The above delegation policy specifies that departmental managers are not allowed to delegate the access rights specified
by the managerFileAccess policy to employees that are not managers.

www.manaraa.com

78 Chapter 3. Basic Policy Constructs

inst del eg- invalidDel eg2 (nanager Fil eAccess) {
subj ect /Enpl oyees/ Manager s/ Gener al Managers ;
grantee /Enpl oyees - /Enpl oyees/ Managers;
action wite;

}

The above delegation policy specifies that general managers are not authorised to delegate the write access right specified
by the managerFileAccess policy.

i nst del eg+ col orPrintDel eg (GVprintAccess) {
subj ect /Enpl oyees/ Manager s/ Gener al Manager s;
grantee /Enpl oyees/ Manager s/ Dept Managers;
action print;
when Ti me. bet ween(“ 18: 00: 00", “07:00: 00");
hops 1 /1 do not allow cascadi ng

}

Finally, this last delegation policy specifies that general managers are authorised to delegate the print access right
specified by the GMprintAccess, to departmental managers. Note the use of the maximum delegation-hop constraint
specified at the end of the policy following the 'hops' keyword. Since the maximum number of cascading hops allow is 1,
this disallows cascaded delegation for this policy.

The following scenario (see Figure 3.12) is based on the hypothetical domain structure of Figure
3.11. The scenario is deliberately made more complicated than needed for in real situations just to
demonstrate different aspects of the delegation policy. In order for the FileServer to be permitted to
access the requested file, it must be delegated the access rights from the subject that requires the
access to the file. The same is true for the PrintServer. In order for it to be able to print to a

particular printer, it must be delegated the access right by the user requesting the print.

Now consider the following: A general manager (fred) wants to print a payroll file (filed) on a
color printer (red). Fred first needs to delegate the access right to the PrintServer to print on
ColorPrinters, the right to access the FileServer and request a read on payroll File4, and the right
to access payroll files. The PrintServer then needs to further delegate the right to read PayrollFiles

to the FileServer in order for the file server to be able to read FileA.

read(filen) | €A

fred

delegate print to
colour printers

delegate read on @

file server

file server delegate read
delegate read @ payroll files
payroll files read(fileA)
print(fileA)
on red = .
EELO TN ¥
print(fileA) red
print server

Figure 3.12 Delegation actions involved in printing a payroll file on a colour printer

The following delegation policies must then be in place in order for Fred to be able to print FileA4

on red.

type del eg+ GM oPri nt Server T(aut hPol) (action acti onToDel egate) {
subj ect /Enpl oyees/ Manager s/ Gener al Managers;
grantee [/ Servers/PrintServer;
action actionToDel egate;

www.manaraa.com

Section 3.4. Subject-based Policies 79

inst deleg+ GMoPrintl
del eg+ GM oPrint2
del eg+ GM oPrint3

GM oPri nt Server T(GVpri nt Access) (print);
GM oPrint Server T(fil eServer Access) (read);
GM oPri nt Server T(manager Fi | eAccess) (read);

The first delegation policy (GMtoPrintl) states that a general manager can delegate the right to print to colour printers
coming from the GMprintAccess authorisation policy. The second (GMtoPrint2), that it can call the action read on the
file server, and the third (GMtoPrint3) that it can read payroll files.

inst del eg+ printStoFileS(GvtoPrint3) {
subj ect [/Servers/PrintServer;
grantee /Servers/FileServer;
action read;

}

The last delegation policy (printStoFileS) states that the print server can delegate the right to read payroll files to the file
server. On the attempt to do so, the access control system would check that the print server has already been delegated
this access right. The GMtoPrint3 delegation policy only states that a general manager is authorised to delegate to the
print server the referenced access right; it does not automatically mean that the print server has that right.

3.4 Subject-based Policies

Access control is only one aspect of a policy specification system. A second aspect involves the
management of subjects in the system. We are interested in the specification of policies to control
the operation of automated subjects in the system; we do not deal with human users. In the
following subsections we describe two additional types of policy. Obligations used to specify what
subjects must do and refrains, a form of subject-based access control, to restrict the execution of

these actions within the subject itself.

3.4.1 Obligation Policies

Obligation policies specify the actions that must be performed by managers within the system when
certain events occur and provide the ability to respond to changing circumstances. For example,
security management policies specify what actions must be specified when security violations
occur and who must execute those actions; what auditing and logging activities must be performed,
when and by whom. Obligation policies could relate to management of QoS, storage systems,

software configuration etc.

Obligation policies can also be considered in a more general context as a constrained form of
programming network elements and end-user agents. Active networks, mobile agents and
management by delegation are techniques for transferring executable content to the automated
agents, thus enhancing and customising agents’ capabilities. These techniques offer limited or no
control over the execution of the transferred code. Obligation policies are complementary to these
approaches as they allow to specify what actions must be performed in response to events but are
not dependent on the means used to transfer the code which implements the actions to the

managers.

www.manaraa.com

80 Chapter 3. Basic Policy Constructs

Obligation policies are event-triggered and define the activities automated manager components in
subject domains must perform on objects in the target domains. Event-condition-action rules prove
to be a very flexible approach to specifying management policy as exemplified by PDL, a language
implemented and used in Lucent switching products [Lobo et al. 1999; Virmani et al. 2000]. In
order to carry out an obligation, a manager must know when to perform the action, thus
implementable obligation policies must explicitly specify the event on which the actions must be
performed. Events can be simple, i.e. an internal timer event, or an external event notified by
monitoring service components e.g. a temperature exceeding a threshold or a component failing.

Composite events can be specified using event composition operators.

inst oblig policyName {

on

event - specification ;

subj ect [<type>] donmi n- Scope- Expression ;

[target [<type>] dommin-Scope-Expression ;]
do obligation-action-list ;

[catch exception-specification ;]
[when constraint-Expression ;]

Figure 3.13 Obligation policy syntax

The syntax of obligation policies is shown in Figure 3.13. Note the required event specification
following the on keyword. Table 3.2 specifies the event composition operators that can be used in

event expressions. All event operators have equal precedence and evaluation is strictly left to right.

Operator Explanation

el && e2 Occurs when both e, and e, occur irrespective of their order

e + timne-period Occurs a specified period of time after the occurrence of event e

{er; e} ! e Occurs when e; occurs followed by e, with no interleaving e;

er| ez Occurs when either e; or e, occurs irrespective of their order
€1 -> € Occurs when e; occurs before e,
n*e Occurs when e occurs n times, where n is an integer value

Table 3.2 Event composition operators

The target element is optional as obligation actions may be internal to the subject, whereas
authorisation actions always relate to a target object. The action can be prefixed with the name of
the object on which the action is called, as actions may be on the target, internal to the subject or
part of the subject’s interface. If no prefix is specified, the action is assumed to be internal to the
subject or part of the subject’s interface by default. Concurrency operators specifying whether
actions should be executed sequentially or in parallel are used to separate the actions in an
obligation policy. The optional catch-clause specifies an exception that is executed if the actions
fail to execute for some reason. The concurrency operators for obligation policy actions are given
in the following table (Table 3.3). All concurrency operators have equal precedence and evaluation

is strictly left to right. Parenthesis can be used to change the default precedence.

www.manaraa.com

Section 3.4. Subject-based Policies 81

Operator Explanation

ap -> a a, must follow a;. If any of the actions fails or is not allowed by a refrain policy, the
execution stops.

a || a a,; and a, may be performed concurrently. Execution continues when either has
finished.

a && a, a, and a, may be performed concurrently. Execution continues when both have
finished. If any of the actions fails or is not allowed by a refrain policy, the execution
stops.

a | a a, is performed. If it fails or is not allowed by a refrain policy, a, is performed. If a;

succeeds, execution stops.

Table 3.3 Action concurrency operators

A formal treatment of event composition operators, and the action concurrency operators, is
presented in Section 5.5. The following are a few simple examples to demonstrate some of the

features of obligation policies.

inst oblig |oginFailure {

on 3*| ogi nfail (userid) ;

subj ect s = / NRegi on/ SecAdmi n ;

target <userT>t = /NRegion/users->select(tl | tl.getld() = userid)
do t.disable() -> s.log(userid) ;

}

This policy is triggered by 3 consecutive loginfail events with the same userid. This is an example of a simple event
composition. The NRegion security administrator (SecAdmin) disables the user with userid in the /NRegion/users domain
and then logs the failed userid by means of a local operation performed in the SecAdmin object. The *->” operator is used
to separate a sequence of actions in an obligation policy. Names are assigned to both the subject and the target. They can
then be reused within the policy. In this example we use them to prefix the actions in order to indicate whether the action
is on the interface of the target or local to the subject.

type oblig printFail (string nmsg, QueueMan gMan) {
on printfail (jobid, userid, filenane);
subject s = printMnager;
target ms = /servers/ mail Server;
do ns. mai |l to(userid, filenane+nsg) || s.putlnQueue(gMan, jobid);

}

Types external to the policy specification can be specified assuming the corresponding specifications are accessible from
a type repository. This is demonstrated with the above policy. The printFail obligation type accepts two parameters one
of which is an external type called QueueMan. This is an interface specification of a printer queue manager object. The
gman parameter is then used as a parameter in the call to putinQueue which is local to the printManager. The use of the ||
concurrency operator allows the actions to be performed in parallel.

The following examples demonstrate the use of more complicated domain scope expressions based
on OCL collection operations to select the subjects/targets involved in the action execution of

obligation policies.

type oblig printJob (set S, domain T, int maxpages) ({

on print(job, sender);

subject S ™ {sender};

target T->select(t | t.state = ‘idle’);

do print(job) -> sender.mail ("job re-directed");
when j ob. pages > naxpages;

inst oblig backupFiles {
domain d = backupAdmi ns/;
on Ti mer. at (“20: 00: 00");
subject s = d->select(sl|);
target /1 ogServer;
do backup() -> s.log();

www.manaraa.com

82 Chapter 3. Basic Policy Constructs

In the printJob policy, the sender (of the print job), executes the job on targets (printers within domain T) which are idle.
The second obligation policy (backupFiles) obliges backup administrators (backupAdmins) to backup files located on the
logServer every day at 8:00pm. However, we only want one of the administrators to execute the backup. The select
operation on the subject domain selects only one object from the set of subject objects. This is indicated by an empty
select expression. A select operation of the form: S->select(s1,s2|) would select two objects from the set S, whereas a
non-empty expression after the bar would select those subject objects from which the expression evaluates to true. Note
that basic policies can define constants that can be reused in the specification. The backupFiles policy defines a domain
constant d, which is then used in the specification of the subject of the policy.

Scripted Actions

A script is an externally-defined code object that can be imported into a Ponder specification from
a domain. An obligation action can be defined as a script using any suitable scripting language to
specify a complex sequence of activities or procedures with conditional branching. Scripts provide
the flexibility of including complex actions which cannot be expressed as single object method
invocations and can contain conditional statements supported by the scripting language used. For
example, a script could be defined to update software on all computers in a target domain as an
atomic transaction which rolls back to the old version if any one of the updates fail. An action
script could specify conditional execution of sub-actions so that the execution of a sub-action could
be dependent on the result of a previous one. This is similar to the conditional policy rules defined
in the IETF notation, which limits the condition to an ORed set of ANDed conditions or an ANDed
set of ORed conditions [Moore et al. 2001]. Scripts are implemented as objects and stored in
domains. Thus authorisation policies can be specified to control access to the scripts as shown in

the following example:

i nst aut h+ donai nManagenent 1 {
subj ect /domai nAdmi n;
action execut e;
target / scripts/domai nMove(A, B, x);

when A="/users/ gol d” and B="/users/silver”;
}
inst oblig domai nMbve {

on of f ensi veRequest (user);

subj ect /domai nAdmi n;

do /'scri pts/ domai nMove(”/users/gold”, “/users/silver”, user);
}

The authorisation policy permits domain administrators to execute the script object ‘domainMove’ when the first two
parameters to it are “/users/gold” and “/users/silver”. This script moves an object x from domain A to domain B. Since
this is considered to be a security sensitive operation only domain administrators are permitted to execute it, and only to
downgrade gold service users to silver service users. The obligation policy specifies that domain administrators must
move a user from the gold service domain (“/users/gold”) to the silver service domain (“/users/silver”) when that user has
requested access to a web-page which is considered offensive.

If an interpreted language such as Java is used to program scripts, then the scripts could be updated
using mobile code mechanisms to change the functionality of automated manager agents, although
this suffers from all the usual security vulnerabilities of mobile code [Chess 1998]. Extending the
functionality of a manager agent is an operation on the agent’s management interface and can be

restricted by authorisation policies.

www.manaraa.com

Section 3.4. Subject-based Policies 83

Scripts are primarily used as obligation policy actions, but they can also be invoked as actions in
positive authorisation action-filters, in the when-clause (i.e. the constraint) of any basic policy, or

as exceptions in obligation policies and meta-policies (see Section 4.5).

3.4.2 Refrain Policies

Refrain policies define the actions that subjects must refrain from performing (must not execute) on
target objects even though they may actually be permitted to do so. In other words, refrain policies
act as restraints on the actions that subjects perform. They have a similar syntax to negative
authorisation policies, but are enforced by subjects rather than target access controllers. Refrains
are used for situations where negative authorisation policies are inappropriate because the targets
are not trusted to enforce the policies (e.g., they may not wish to be protected from the subject), or
because it may not be possible to enforce an access control policy; e.g. the decision depends on
attributes and state values of the subject performing the action. In addition, an action specified in an
obligation policy might be internal to the subject as part of its interface, or a script action loaded
into the agent implementing the subject. Calls on those actions can only be restricted using refrain
policies because they do not involve method calls on target objects, making it impossible to control
their execution using authorisation policies. The syntax of refrain policies (Figure 3.14) is the

same as that of negative authorisation policies.

inst refrain policyNane {

subject [<type>] domain-Scope-Expression ;
target [<type>] domai n- Scope- Expression ;
action action-list ;

[when constraint-Expression ;]

Figure 3.14 Refrain policy syntax
The following are simple examples of using refrain policies.

inst refrain testingRes {
subj ect s=/test-engineers ;
target /anal ysts + /devel opers ;
action discloseTestResults() ;
when s.testing_sequence = "in-progress" ;

}

This refrain policy specifies that test engineers must not disclose test results to analysts or developers when the testing
sequence being performed by that subject is still in progress, i.e., a constraint based on the state of subjects. Analysts and
developers would probably not object to receiving the results and so this policy is not a good candidate for a negative
authorisation.

inst refrain |oginFailureR {

subj ect s = / NRegi on/ SecAdmi n ;

target <userT>t = /NRegion/users ;

action t.disable() ;

when / NRegi on/ users/ privil edged->exists(u | u.getld() = t.getld());

}

The loginFailureR refrain policy relates to the loginFailure obligation in Section 3.4.1. It instructs the subjects (security
administrators) not to disable targets (users) which are part of the /NRegion/users/priviledged domain. i.e. who are
priviledged.

www.manaraa.com

84 Chapter 3. Basic Policy Constructs

3.5 Common Elements Specification

Elements that are common in a policy specification can be defined separately and reused. These
include: events, constraints and a variety of constants. Although the examples in this section show
the use of common elements in single policies, definition and reuse of event, constant and

constraint specifications will be useful in larger specifications of groups of policies (see Chapter 4).

3.5.1 Event Definitions

Events in Ponder are used to trigger obligation policies. It is convenient to be able to define events
separately, and re-use them in multiple obligation policies. The definition of an event may be
parameterised. Event parameters map onto the event attributes, which define new names within the
scope of the policy object where the event is specified. These names can then be referenced within

the policy (see example that follows).

event tinmerA = Timer.at("2001:12: 15", "22:17:00");
event tinmerB = Tiner.every(“24 hours”, "07:20:00");
event circuitFailure(h,x,y) = (envAlarm(h) -> rFailure(x,y));

inst oblig resetGrcuit {
subj ect /brEngineer ;
on circuitFailure(h,x,y)
do resetGrcuit() ;
target /brCrcuits->get(h) ;
}

In the above example, a Timer object for generating time-based events is used. The first event occurs at a particular date
(15 Dec. 2001) and time (22:15:00), the second event occurs every 24 hours at 07:20. The third event
circuitFailure(h,x,y) demonstrates the use of parameters in the definition of an event. The named event receives three
parameters (h,x,y) that can be referenced in the obligation policy that uses this event. The first parameter corresponds to
the parameter of the envAlarm(h) while the second and third to the two parameters of rFailure(x,y). The two events that
are used in the event expression are assigned to the new event. You can see how the first parameter is used in the
specification of the target in the obligation policy resetCircuit. Similarly, the timerA and timerB events can be used to
trigger other obligation policies as required.

3.5.2 Constraint Definitions

Constraints used to limit the applicability of basic policies i.e. as part of the when-clause of a
policy (Section 3.3.2) can also be defined separately, named and reused. Similar to events, defined

constraints can be parameterised.

constraint active(s)
constrai nt workHours

s.isActive() and s.isEnabled();
Ti me. bet ween(“ 08: 00: 00", “16:00:00");

type oblig serviceReset(subject s, target t) {
on e ;
do t.reset() ;
when active(s) and workHours;

}

In the above example, two constraints are specified, which are both used in the specification of the constraint on the
obligation policy serviceReset. The first constraint takes a parameter s, which is used in its specification. The second
constraint workHours, is a time constraint, and is valid only between 8:00am and 4:00pm.

www.manaraa.com

Section 3.5. Common Elements Specification 85

3.5.3 Constant Definitions

Constants can be defined in Ponder as shown in Figure 3.15. A type identifier can be used to
indicate the user-defined type of a constant if it is not one of the predefined types (int, real, string,
boolean). User-defined types are policy types. External types can be used to define constants which
are not part of a policy specification. These are the IDL types of objects in the managed system.
The set type defines a domain scope expression, which can be used to specify subject, target and
grantee elements in basic policies. A set can be followed by the definition of the type of the objects

in the set. This is usually the IDL type of subjects and targets.

constant definition =
int {identifier = expression ;} |
real {identifier = expression ;} |
string {identifier = expression ;} |
bool ean {identifier = expression ;} |
set [<type-nane>] {identifier = dommi n_scope_expression ;} |
user type-nane {identifier = expression ;} |
extern type-nane {identifier = expression ;} ;

Figure 3.15 Syntax for constant definitions

The following are a few examples of defining constants.

int y=05;
string x = manager X. get Name() ;
string strl = "this is a string";

set targetSetl = /subnetA/routers;

set <EdgeRouter> targetSet2 = /subnetB; // All objects of type EdgeRouter from/subnetB
user nyRol eType nyRol el = /branchA/rol es/rolel,;

extern Router routerl = /routers/routerl; // Gve a nane to a router object

Any of the constants described above, including the constraints and events described earlier, can be

used to parameterise policy types.

3.5.4 External Specifications

External specifications are used to embed non-Ponder text into a Ponder specification. Unlike
comments which are un-named and ignored by the policy compiler, external specifications are
named and preserved by the compiler and runtime system. Such specifications can be accessed by
external tools either at compile-time and/or run-time. External specifications are typically used to
develop Ponder variants/extensions or attach non-Ponder definitions, code, scripts, performance
and protocol requirements, structured documentation etc. to a Ponder specification. Their
enforcement is implementation dependent. External specifications are enclosed within three angle

brackets and preceded by the keyword spec, as shown in the following example.

inst auth+ net_config {
subject netQp/;
action setStrategy ;
target gEdgeRtr/

spec refs <<<

rel ated net_config2, net_configs3;
parent config

www.manaraa.com

86 Chapter 3. Basic Policy Constructs

child router_config
>>> ; [/ end refs

}

In this example, an external specification named refs, associated with an authorisation policy specifies references to
related obligation policies for which it is required as well as a parent policy from which it is refined and child policies
which are derived from it. An analysis tool can extract the specification, parse it and interpret it accordingly.

3.6 Security Policy Examples

We present some additional examples to indicate the expressiveness of the language for security
policies. Although our focus has been on non-discretionary access control, the language can be
used to specify a variety of security policies. We revisit the issue of expressiveness in Chapter 4,
after we have presented the composite features of the language which allow role-based policies to

be specified.

Closed/Open Policies

A closed policy allows an access if there exists a positive authorisation for it, and denies it
otherwise. Similarly, an open policy denies an access if there exists a negative authorisation for it
and allows it otherwise. The simple case of classical closed/open policies can be simulated in our
language by allowing only positive/negative authorisation policies to be specified. This can be
implemented using simple authorisation policies to control the modality of the policies that can be
added in the system. A closed policy can be implemented with the positive authorisation policy
shown below which only allows positive authorisation policies to be specified. We implement an
open policy with a single positive authorisation policy, which allows any action by any subject on
any target (within a sub-tree of the domain hierarchy on which the open policy is to be enforced) to
act as the default case. A negative policy can then be specified to prevent the specification of any
additional positive authorisation policies involving those subjects/targets. Only negative

authorisations will be allowed.

i nst aut h+ cl osedAut hl {
subject s = /securityAdm ns;
target as = /services/authorisationService;
action as.addAuth(a);
when a.getMdality() = “+";

}

The closedAuthl policy permits security administrators to add authorisation policies in the system (by calling the
addAuth method of the authorisation service) if the modality of the authorisation policy to be added is positive.

Authorisation for Classes of Objects

In general we advocate specifying policy in terms of instances rather than classes of objects,
because we believe the idea of specifying authorisation in terms of classes or types of objects, is
restrictive and infeasible in large-scale systems with millions of instances of a class. In practical

applications policies are specified for sets of objects not related by class; objects are normally

www.manaraa.com

Section 3.6. Security Policy Examples 87

grouped because of geographical distribution, for the convenience of human managers or for other
application-specific reasons. However, it may be useful to define that the policy will only apply to
instances of a particular class in a target domain. Knowing the class of the target object enables the
interface specification to be located for checking that the policy actions correspond to methods in

the interface. Consider the examples below:

type auth+ PrintAccessT (subject s, target t, string endTinme) {
action print() ;
when Ti me. bet ween(" 09: 00: 00", endTi ne);

}

inst auth+ staffPrintAccess = new PrintAccessT(/staff, /allPrinters, "22:00:00");
i nst auth+ studentPrintAccess = new PrintAccessT(/students, /bwPrinters, "18:00:00");

In the above example, we define a positive authorisation policy type (PrintAccessT). This policy type is parameterised
with the subject and target of the policy, and with a string indicating a time parameter to the time constraint of the policy.
The string parameter is used to specify the endTime in the expression: Time.between("'09:00:00", endTime) which
constrains the validity time for the policy. The first instance (staffPrintAccess) creates a positive authorisation policy
which authorises members of the staff domain to print to all printers (objects within the /allPrinters domain) between
09:00am and 10:00pm. The second instance (studentPrintAccess) creates a positive authorisation policy which authorises
members of the students domain to print to black and white printers (objects within the /bwPrinters domain) between
9:00am and 6:00pm.

type auth+ PrintAccessFord assT (subject s, string endTinme, type) {
target <type> /bwPrinters + /colorPrinters;

action print();
when Ti ne. bet ween(" 09: 00: 00", endTi ne);
}
inst auth+ staffPrintAccess = new PrintAccessT(/staff, "22:00:00", |laserPrinters);
i nst auth+ studentPrintAccess = new PrintAccessT(/students, "18:00:00", inkjPrinters);

The example shown above creates two positive authorisation instances with the similar semantics as in the previous
example. However in this case, we use the ability of restricting the type of target objects to achieve the parameterisation
of the target object. Target objects have different types (belong to different classes of objects) instead of being grouped
into different domains. The authorisation type is not parameterised with the target of the policy. The target is the union of
the printers in the bwPrinters domain and the colorPrinters domain. However, the class of target objects to which the
policy applies is a parameter. Note the specification of the type (class) of objects following the target keyword. The first
instance (staffPrintAccess) creates a positive authorisation policy which authorises members of the staff domain to print
to laser printers between 09:00am and 10:00pm. The second instance (studentPrintAccess) creates a positive
authorisation policy which authorises members of the students domain to print to inkjet printers between 9:00am and
6:00pm.

Ownership

The central idea of DAC is that the owner of an object, who is usually its creator, has discretionary
authority over who else can access that object. The owner can grant and revoke access rights for
other users to that object [Sandhu et al. 1994]. Although we consider the idea of ownership as
problematic, we show how it can be simulated in Ponder. The main problem with using ownership
as the basis for allowing access to objects, is the fact that users often do not have access to the data
they create. In addition, in large-scale systems it is often impractical to allow the individual users
which create objects to have full control of who has access to that object. Ownership complicates
access control management in large systems and compromises security as users may abuse or
misuse their power. In our language the access rights correspond to authorisation policies, which
the owner can create in the system to assign permissions to the objects he/she owns. Constraints

based on target object attributes (i.e. the creator/owner attribute) can be used to control access to

www.manaraa.com

88 Chapter 3. Basic Policy Constructs

existing objects as shown in the example below. Delegation policies can also be used to allow the

owner of a domain of objects to delegate access rights on these objects to other subjects.

i nst auth+ owner Aut hl {
subject s = /users/financeDept;
target f =/filelpayroll;
action f.delete(), f.read();
when f.getOwner() = s;

}

In this case we assume a default negative authorisation policy, whereby everything is forbidden unless explicitly
authorised. The ownerAuthl policy authorises a user in the finance department to delete and read payroll files only if that
user is the owner of the file.

Dynamic Separation of Duty

In dynamic separation of duty all members of a group are authorised to perform potentially
conflicting actions but after performing one action they cannot perform a conflicting one. This can
be implemented as constraints relating to attributes of the subject and target objects. Static
separation of duty is a more restricted form of separation of duty in which certain sets of accesses
cannot be allowed for the same subject. This involves constraints over groups of policies to restrict
the specification of conflicting policies. We handle this with meta-policies which are presented in
the next Chapter 4. We also revisit dynamic separation of duty in the context of role-based

management in that next chapter.

i nst auth+ sepDutyl {
subject s = /accountants ;
action approvePaynent ;
target t = /cheques ;
when s.id <> t.issuerlD;

inst aut h+ sepDuty2 {
subject s = /accountants ;

action i ssue ;
target t = /cheques ;
when s.id <> t.approverlD ;

}

The same user from the accountants domain cannot both issue and approve payment of the same cheque. This assumes
that the identity of the issuer/approver can be stored as an attribute of the cheque object.

Derived Authorisations

Derivation rules are sometimes used to express dependencies among authorisations, and allow the
derivation of new authorisations on the basis of existing ones and their validity [Jajodia et al. 1997,
Bertino et al. 1998]. The use of derivation rules increases the complexity of access control
enforcement, and complicates the specification of policies making it difficult to identify at a given
time the access rights of a subject in the system. Although we do not introduce explicit derivation

rules in Ponder, we can still specify such rules as part of the constraint of an authorisation policy:

inst auth+ Al { inst auth+ A2 {
subject /staff ; subj ect /staff/technical
action read ; action wite ;
target /files ; target /files/technical ;
when Time. af ter (“18: 00: 00") ; when Tinme. date() > “01/01/2002” and
} Aut hSevi ce. exi sts(/staff,read,/files); }

www.manaraa.com

Section 3.6. Security Policy Examples 89

The policy A2 specifies a dependency on Al: technical staff are authorised to write technical files if all staff have been
granted the right to read any file and if the date is greater than 01/01/2002. In the constraint of A2 we assume access to an
authorisation service with an interface method called exists, that can be used to check whether the given subject has a
specific access right on a given target.

From the above two authorisation policies, we can derive the following authorisation:

i nst auth+ derivedAuth {

subject /staff/techical

action wite ;

target /files/techincal ;

when Time.after (“18:00: 00”") and Time.date() > “01/01/2001";
}
Although in the above example the derived authorisation policy can be inferred with syntactic
analysis of the policy specification, this will often not be the case. Access control will require the
evaluation of all authorisation policies at runtime in order to derive new authorisations. In addition,
the insertion of new policies or the deletion of policies may change the derived authorisations. In

Ponder we avoid specifying dependencies between authorisation policies.

Backing Policies

Backing policies, introduced in [Rowley 1998], are usually needed in security sensitive situations
where a subject requires the backing of a number of other principals in order to perform an action
e.g. a chairman must have the backing of the majority of the board members in order to call an
extraordinary meeting. In Ponder we can use authorisation and obligation policies to specify
backing assuming that the backing condition can be specified and monitored by the underlying

monitoring service, and then specified as an event to trigger obligation policies.

inst auth+ bl { inst oblig b2 {

subj ect chai r man; on Ext raMeeti ng;

action Call ExtraMeeting(); subj ect chai r man;

target sharehol ders; do Cal | ExtraMeeting();
} target sharehol ders;

}

inst oblig b3 {

on (NoMenber s/ 2+1) *vot es(yes) ;

subj ect trust ed_agent;

do t.enabl e(policies/bl)->ExtraMeeting();

target t = /PolicyService;

}

For the chairman example, we need an authorisation policy (b1) authorising the chairman to call an extraordinary meeting
and an obligation (b2) triggered by an event generated after a majority of yes vote events have been received. The
authorisation policy is enabled only when a trusted agent enables it (in b3). The trusted agent obligation policy is
triggered by the same backing event.

We acknowledge the fact that arbitrary backing policies probably require a separate scripting

language to specify the backing condition.

Lattice-based Policies

In this subsection, we demonstrate how we can specify lattice-based policies, and in particular the
Bell-LaPadula model within our framework. The Bell-LaPadula model assigns a security level to

subjects and targets from a totally ordered lattice of security levels. Subjects can read a target

www.manaraa.com

90 Chapter 3. Basic Policy Constructs

object only if their level dominates that of the target, and they can write an object only if the
object’s level dominates that of the subject. For a precise definition of the Bell-LaPadula model see

Section 2.1.1. Here is an informal solution:

We start by considering the Bell-LaPadula model with just labels (not categories). In this case, a
subject is permitted to write target objects whose label is greater than or equal to the label of the
subject. On the other hand, a subject can read target objects whose label is less than or equal to that
of the subject. Here is how a 3-label example would map to the domain structure. We divide the
domains in two sub-trees, one for subjects and the other for target objects as shown in Figure 3.16.

Each level in the tree corresponds to a label starting from the minimum label.

Figure 3.16 Mapping a label-only Bell-LaPadula policy to a domain structure

The arrows labelled W and R between the subject and the target domains show the write and read

policies that can be specified using this domain structure. Here are policies Wy and R;. The rest are

similar.

inst auth+ W { inst auth+ Rl {
subject /Sl ; subject S1 ;
action wite ; action read ;
target /T1 ; t ar get @s/Tl ;

} }

The domain scope expressions provided by the grammar can be used to restrict the propagation of
policies to sub-domains to the desired level as in R;. Adding the categories to model the complete
version of Bell-LaPadula just increases the number of domains that need to be created. The way to
model this follows the same approach. Consider the above case of the three labels, with the
addition of the set of categories: K = {ky, k.}, from which the following subsets are possible: {k;},
{k:}, {ki,ko}. We “divide” the domains at each level (of the previous solution) into separate
domains for each subset of the set of categories as shown in Figure 3.17. Each domain is shown at
the corresponding level as before and the text within it shows the subset of the set of categories to

which it corresponds.

The arrows on the figure correspond to policies representing read, append and write access. Based
on the Bell-LaPadula model, domain S; 3 can have read access on the lightly shaded target domains

as shown by the R; and R, policies, since their label (classification) is lower than or equal to that of

www.manaraa.com

Section 3.7. Conclusions 91

domain Ss3, and their categories are proper subsets of domain S; 3 categories. Wy shows the write
policy of Sg3 and A; shows the append policy for S;,. All other policies, for write and append, can

be realised in exactly the same way, stopping the propagation to sub-domains where necessary.

classification

.. .. 23 .. e #
S, 3.3 Ty, b 33 max
{k;} {k;} {ky kb {k;} {k;} {kyko} classification

Figure 3.17 Mapping a Bell-LaPadula policy to a domain structure

It is possible to formalise the above solution. An important remark is that the above process of
modelling the Bell-LaPadula security model using policies and domains, given a set of labels
(classifications) and a set of categories, could be automated. However, although we can translate
sensitivity levels into domain structures, any changes such as adding a category or a level, requires

re-computing the domain structure.

Note: We see no value in specifying lattice-based policies using Ponder as this proves to be an
inefficient and lengthy process. In addition, there is extensive research for approaches and

techniques that can be used and are more suitable for mandatory policy implementation.

3.7 Conclusions

In this chapter we have presented the basic policy types of a language called Ponder, which was
designed with the requirements described in Section 1.2 in mind. The basic policy types that are
supported by the language are the following:

* Authorisation policies specify the list of actions that subjects are permitted or prohibited to
perform on targets in the system. The language allows support for negative authorisation
policies to explicitly forbid access. Positive authorisation policies can be extended with
filters to transform the input values to action calls and their return values when these actions
are allowed. All basic policies are defined over sets of objects formed by applying set
operations, such as union, intersection and difference to the objects within domains.
Domains can include domains (sub-domains) and set operations can be restricted to apply

only to the top-level members of a domain, or applied recursively to any desired level,

www.manaraa.com

92 Chapter 3. Basic Policy Constructs

including all nested levels of a domain. Constraints are used to restrict the applicability of
policies.

e Delegation policies specify the permission to delegate access rights implied by
authorisation policies to members of a grantee scope. The language supports constraints on
delegation policies, negative delegation policies and cascaded delegation. Authorisation
and delegation policies constitute the access control policies, which can be specified in the
proposed policy language. They are designed to protect target objects and are conceptually
enforced by each target.

* Obligation policies are event-triggered condition-action rules, which define the actions
subjects (human or automated manager components) must perform, usually in relation to
objects in a target domain.

e Refrain policies are a form of subject-based access control policy, which restricts the
actions that subjects should execute, and are used where negative authorisations are not

appropriate or cannot be specified.

All policies can be specified as parameterised #ypes corresponding to classes in an object-oriented
language. Policy instances can be created from the user-defined policy types and tailored to
specific situations. Events, constraints and other constants can be defined and reused within policy
specifications to enhance reusability. The language allows specifications external to the policy

language to be embedded in a policy text.

We have presented simple examples of using the language in order to demonstrate its
expressiveness, and evaluate its applicability in specifying certain policies. Examples can identify
changes that need to be made in the language grammar, or policies for which the language is not
suitable. More specifically, it became clear that the use of Ponder to specify lattice-based
information flow policies as typified by the Bell-LaPadula model results in a complex specification
(see Section 3.6). In general, the use of policy languages to specify lattice-based policies is
inappropriate because lattice-based models assume a fixed set of policies to regulate the access of
subjects to targets. However, we have presented examples of how Ponder policies can be used to
specify other security policies available in the literature including the classical open (close)
policies, dynamic separation of duty policies, backing policies where the execution of an action
must be backed up by a number of subjects, and DAC policies where authorisations are based on
the presence of other authorisations in the system. Future work will need to concentrate more on

the evaluation of the language using large-scale scenarios from real-life applications.

www.manaraa.com

Chapter 4

Composite Policy Features

4.1 Introduction

There is a need to group a set of related policy specifications within a syntactic scope with shared
declarations in order to simplify the policy specification task for large distributed systems. This is
a common concept in many programming environments and is the main motivation behind
composite policy types in Ponder. Ponder composite policies facilitate policy management in large,
complex enterprises. They provide the ability to group policies and compose them to reflect
organisational structure, preserve the natural way system administrators operate or simply provide
reusability of common definitions. This simplifies the task of policy administrators, and adds role-
based management features to the language. At run-time, the set of policies defined in a composite

policy, together with any constraints applying to the composite policy would be stored within a

domain.
child | ManagedObject
1 Domain Policy
parent INTN ZF
I

|

subject} } ’ ‘ ‘

domain | ! - - operates on - * . -
I } BasicPolicy <—-————————- MetaPolicy —————< CompositePolicy
R —
|
| [1.»
|
|
I
|
|
| | | |
} Group Role Relationship MStruct
|
|
I

= | L L] f

Figure 4.1 Composite policy object class hierarchy

In Figure 4.1 we extend the information model with composite policy classes. The figure includes
only those classes which are necessary to illustrate the relation of the new classes to those

described in the previous chapter. Four types of composite policies will be presented in detail in

93

www.manaraa.com

94 Chapter 4. Composite Policy Features

this chapter: groups, roles, relationships and management structures. A composite policy includes
one or more basic policies, nested groups and possibly meta-policies to specify application specific
constraints on the policies specified within the scope of the composite policy. A role is always
associated with a domain that specifies the common subject for all the policies inside the role.
Relationships are specified for two or more roles, and management structures (MStruct) group

related role-relationship configurations to model organisational units.

4.2 Groups

A group is a packaging construct to group related policies together for the purposes of policy
organisation and reusability and is a common concept in most programming languages. There are
many different potential criteria for grouping policies together — policies may reference the same
targets, relate to the same department or apply to the same application. Figure 4.2 shows the syntax
for a group instance, and a group type. A group can contain zero or more basic policies, nested
groups and/or meta-policies in any order. A meta-policy specifies constraints on the policies within

the scope of the group, and will be discussed later in Section 4.5.

i nst group groupNane { type group groupNane(formal -paraneters) {
{ common- el emrent - speci fi cation} { common- el enent - speci ficati on}
{ basic-policy-definition } { basic-policy-definition }
{ group-definition } { group-definition }
{ nmeta-policy-definition } { meta-policy-definition }
} }

Figure 4.2 Group construct syntax

Reusability can be achieved by specifying groups as types, parameterised with any policy element
or system attribute, and then instantiating them multiple times. As an example, policies related to

the login process can be grouped together since they would always be instantiated together.

inst group |ogi nG oup {

i nst auth+ staffLogi nAuth {
subj ect /dept/users/staff ;
target /dept/conputers/research;
action |ogin;

}

inst oblig | oginActions {
subj ect s = /dept/conputers/|ogi nAgent ;

on | ogi nevent (userid, conputerid) ;
target t = conputerid ~ {/dept/conputers/} ;
do s.log (userid, conputerid) -> t.|oadEnvironnent (userid) ;

}

inst oblig loginFailure {

on 3*|l ogi nfail (userid) ;

subj ect s = / NRegi on/ SecAdnin ;

target <userT>t = /NRegion/users->select(tl | tl.getld() = userid) ;
do t.disable() -> s.log(userid) ;

www.manaraa.com

Section 4.3. Roles 95

The login group policies authorise staff to access computers in the research domain, log login attempts, load the users
environment on the computer and deal with login failures.

4.3 Roles

Roles provide a semantic grouping of policies with a common subject, generally pertaining to a
position within an organisation such as department manager, project manager, analyst or ward-
nurse. Specifying organisational policies for human managers in terms of manager positions rather
than persons permits the assignment of a new person to the manager position without re-specifying
the policies referring to the duties and access rights of that position (see Section 2.5.3). A role can
also specify the policies that apply to an automated component acting as a subject in the system, or

to a network device such as a router.

We represent organisational positions with domains, which we call subject domains, and associate
them with roles. A role is thus the set of authorisation, obligation, refrain and delegation policies

with the subject domain of the role as their subject.

inst role rol eNane { type role rol eNanme(fornal - paranmeters) {
{ common- el enent - speci fi cati on} { common- el ement - speci fi cati on}
{ basic-policy-definition } { basic-policy-definition }
{ group-definition } { group-definition }
{ meta-policy-definition } { neta-policy-definition }
} [@subject-domain] }

Figure 4.3 Role construct syntax

Roles (Figure 4.3) can include any number of basic-policies, groups or meta-policies. The subject
domain of the role can be optionally specified following the ‘@’ sign for role instances, and must
be pre-created. If it is not specified then a subject domain with the same name as the role is created

by default when the role instance is created.

type role /nmgntlnfo/rol es/ Servi ceEngi neer (Cal |l sDB cal | sDb) {
inst oblig serviceConplaint {

on cust oner Conpl ai nt (nobi | eNo)
do t.checkSubscri ber | nf o(nobi | eNo, userid) ->
t. checkPhoneCal | Li st (nobi | eNo) -> investigate_conpl aint(userld);
tar get t =callsDb; // calls register
}
inst oblig deactivateAccount { . . . }
inst auth+ serviceActionsAuth { . . . }

/'l other policies

}

inst role /ngntl|nfo/rol es/ ArealServi ceEng =
mgnt | nf o/ r ol es/ Servi ceEngi neer (ArealCal | sDB) @ SDY ar ealSer vi ceEng;

The role type ServiceEngineer models a role in a mobile telecommunications service, which is responsible for responding
to customer complaints and service requests. The role type is parameterised with the calls database, a database of
subscribers in the system and their calls. The obligation policy serviceComplaint is triggered by a customerComplaint
event with the mobile number of the customer given as an event attribute. On this event, the subject of the role must
execute a sequence of actions on the calls-database in order check the information of the subscriber whose mobile-
number was passed in through the complaint event, check the phone list and then investigate the complaint. Note that the
obligation policy does not specify a subject as all policies within the role have the same implicit subject. The role is
instantiated with the calls-database for area 1 to create the role instance ArealServiceEng. The domain /mgmtinfo/roles is

www.manaraa.com

96 Chapter 4. Composite Policy Features

used to store both the role type and the role instance definitions. The subject domain of the role instance is
/SD/arealServiceEng. Users assigned to the role must be included in this domain (see Section 7.6.2 for a description of
user-role assignments).

4.3.1 Type Specialisation

Ponder allows specialisation of policy types through the mechanism of inheritance. When a type
extends another, it inherits all of its policies, may add new policies and overrides policies with the
same name. Inheritance is only defined for composite policy types. We present it here in terms of
the role construct but it can also be used for groups, as well as relationships and management

structures which will be presented in Section 4.4.

type role rol eTypeNane (fornal Paraneters) extends parentRol eType [(actual paraneters)]
[{, parent Rol eType [(actual paraneters)]}] {
rol e- body

Figure 4.4 Inheritance syntax

The type that extends some other base type, can pass parameters to the base type with the extends-
clause in order to parameterise the base type. The language does not currently support
polymorphism or dynamic binding. In this thesis we define multiple inheritance only for role policy
types. The problem with multiple inheritance is that of multiple policies with the same name
coming from different base-types [Lupu 1998]. This can be solved in two ways:

e The policy compiler can warn the policy writer of this situation, so that the policy writer can
choose not to inherit one of the two base types or change the names of the policies in the
base-types if possible.

e By prefixing the names of the policies with the name of the type from which they are
inherited. This is a common way of resolving similar name-conflicts from multiple

inheritance in object-oriented languages.

We show an example of the use of inheritance to extend a role type below:

dommi n /ngnt | nfol/rol es;

type rol e MsSServEngi neer (CallsDB vlr, Sql DB eqRegi stry) extends ServiceEngi neer(cdb) {
inst oblig naintai nProbl ens {

on MSf ai | ure(equi pnent 1 d) ; /1 M5 = Mobile Station
do updat eRecor d(equi pnentld) ;
target eqgRegistry /1 Equi pnent identity registry

}

The MSServEngineer (MobileStation Service Engineer) role extends the ServiceEngineer role specified in the previous
example. It inherits the policies of the parent role and adds an obligation policy that updates the equipment’s record in the
equipment identity registry (the target) when the mobile station signals a failure (the event).

Role Hierarchies

Role and organisational hierarchies can be specified using specialisation. The role-hierarchy in

Figure 4.5 can be specified in Ponder by extending roles as shown in the following example.

www.manaraa.com

Section 4.4. Role Relationships and Management Structures 97

Employee

AdminStaff ResearchStaff

Projectiianager

Figure 4.5 A role hierarchy

(SoftwareDeveloper |

type role EnployeeT(.) { ...}

type role Admi nStaffT(..) extends Enpl oyee { ...}
type role ResearchStaffT(..) extends Enployee { ...}
type role SecretaryT(..) extends AdminStaff { ...}

type rol e SoftDevel operT(..) extends ResearchStaff { ...}
type role ProjectManagerT(.) extends ResearchStaff { ...}

4.4 Role Relationships and Management Structures

Managers acting in organisational positions (roles) interact with each other. A relationship groups
the policies defining the rights and duties of roles towards each other. It can also include policies
related to resources that are shared by the roles. It thus provides an abstraction for defining policies

that are not part of the role specifications, but are part of the interaction between the roles.

inst rel relationshipNane { type rel relationshi pName(fornal -paraneters) {
{ common- el ement - speci fication } { common- el enent - speci ficati on}
{ basic-policy-definition } { basic-policy-definition }
{ group-definition } { group-definition }
{ role-definition } { role-definition }
{ meta-policy-definition } { neta-policy-definition }
} }

Figure 4.6 Relationship construct syntax

The syntax of a relationship (Figure 4.6) is very similar to that of a role. In addition, a relationship
includes the definitions of the roles participating in the relationship. Alternatively, these roles can

also be passed as parameters to relationship types. An example of this is shown below:

type rel ReportingT (ProjectManagerT pm SecretaryT secr) {
inst oblig reportWekly {
on Ti ner. day (“nonday”) ;
subj ect secr ;
t ar get pm ;
do mai | Report () ;

/'l other policies or roles participating in the relationship

}

The ReportingT relationship type is specified between a ProjectManager role type and a Secretary role type. The
obligation policy reportWeekly specifies that the subject of the SecretaryT role must mail a report to the subject of the
ProjectManagerT role every Monday. The use of roles in place of subjects and targets implicitly refers to the subject of
the corresponding role.

Relationships were introduced in [Lupu 1998] and a syntax for interaction protocol specification
was also proposed to define the interactions between the managers, assigned to the roles of a
relationship, in terms of the permitted sequences of messages that the managers can exchange. This

is a very important part of a relationship specification which we do not cover in this thesis. Future

www.manaraa.com

98 Chapter 4. Composite Policy Features

work will need to revisit this issue and extend the grammar with interaction protocols, which

should be part of the relationship syntax.

4.4.1 Management Structures

Many large organisations are structured into units such as branch offices, departments, and hospital
wards, which have a similar configuration of roles and policies. Ponder supports the notion of
management structures to define a configuration in terms of instances of roles, relationships and
nested management structures relating to organisational units. For example a management structure
type would be used to define a branch in a bank or a department in a university and then

instantiated for particular branches or departments.

inst nstruct nmanStruct Nane { type nstruct manStruct Narme(formal - paraneters) {
{ common- el enent - speci fication } { common- el enent - speci fi cati on}
{ basic-policy-definition } { basic-policy-definition }
{ group-definition } { group-definition }
{ role-definition } { role-definition }
{ relationship-definition } { relationship-definition }
{ meta-policy-definition } { meta-policy-definition }
} }

Figure 4.7 Management structure syntax

A management structure is a composite policy containing definitions of roles, relationships and
other nested management structures. Basic policies, which refer to the roles and relationships
defined in the management structure, as well as constraints in the form of meta-policies can also be
included (Figure 4.8). We consider a management structure as being different to the concept of a
community as defined in the RM-ODP Enterprise Viewpoint [ISO/IEC 1999]. A community in
RM-ODP terminology is a semantic concept defined as *“a configuration of objects formed to meet
an objective”, where the objective is expressed as a “contract which specifies how the objective can
be met”. Management structures are structuring mechanisms used to compose policy specifications
based on organisational or network structure, in order to cope with large-scale policy
specifications. We thus refrain from specifying relationships or interaction-protocols between

management structures, and we only allow them to be composed using syntactical inclusion.

Relationship X

Relationship Y
<E Meta policy ’l

Constraints

Policies

Figure 4.8 Management structure components

www.manaraa.com

Section 4.4. Role Relationships and Management Structures 99

Next, we present an example to demonstrate the use of roles, relationships and their configurations

in management structures.

4.4.2 Example: Security Quality Assurance in SLA Management

A service level agreement (SLA) implies certain guarantees for the customer of that SLA. The

content of these guarantees can roughly be broken down into the following areas:

< Stability: availability, guarantee of failsafe operations, meantime between failure
e Performance: response times, guaranteed capacity
» Security: protection against any form of system attacks

e Support: hotline availability times, etc.

In this section we borrow the ideas of a case study presented in [Hegering et al. 1999] which
involves the security area of quality assurance in SLA management for networked environments.
We deal with a telecommunications network that is constructed from interconnected networks of
digital switching nodes (SNs). The network is divided into regional networks, which consist of a

number of local network sites each of which is a digital switching network.

Local Network Site 1

Archive
computers

ISDN router

Evaluation computer
Log receive Unit

Digital Switching
Network

FDDI ring

Central Log
Archive

Disk array Local Network Site n

Attack Pattern
Archive computer

ISDN router

Gateway

Attack
Pattern
acrhive

Evaluation computer
Log receive Unit

Figure 4.9 Security quality assurance system architecture

Figure 4.9 illustrates the operation of the security quality monitoring and assurance system for one
of the regions of the telecommunications network. The goal is to monitor all operations executed
on the switching nodes of the digital switching network, in order to be able to detect and trace any
security attacks. The switching nodes of the digital switching network generate specialised log

data, which is stored in log-files. Experts, who are familiar with the structure of the log data

www.manaraa.com

100 Chapter 4. Composite Policy Features

generated from the various SNs, use an editor tool to create a uniform structured log-file from the
raw log-file generated for each SN initially. Log-data collection is implemented by several log
receive units, which collect the data via ISDN routers. The log receive units that are part of the
same site are interconnected through token rings. Local log databases are used to store the data at
each of the site networks. The data is then transferred over an FDDI ring and archived centrally. An
evaluation manager for the region is responsible for specifying the so-called attack patterns used to
analyse the archived log data, and stored centrally. The attack patterns are compared to the data
logs in order to identify any security attacks. The function of analysing the log data takes place at

each of the site networks as well as at the regional network level.

Security Archive Inventory
Inspector Administrator Administrator

Evaluation

Evaluation

Manager Collection

Evaluation
i

[\\

Ve
& Inspection%&

| Security Collector
nspector
p LogStructure

\ Llog
Data
Local Network & Expert

Site 1

>

Figure 4.10 Roles, relationships and management structures for a single TN region

L

Access to the various archiving systems, log databases, and tools is restricted only to authorised
users assigned to the appropriate roles. Figure 4.10 illustrates the various roles involved in the
operation of the system, and identifies the relationships that exist between them to enable

coordination and cooperation.

e Security Inspector: authorised to access and use the log evaluator tool to check the log
data. A security inspector role is defined for each of the local network sites, as well as for
the regional domain network. Security inspectors interact with the evaluation managers to
notify them of detected security attacks.

« Evaluation Manager: responsible for specifying the attack patterns using the attack pattern
editor. A second function of this role is to plan the measures to take when attacks are
detected. The evaluation manager interacts with the security inspectors to receive

information about detected attacks.

www.manaraa.com

Section 4.4. Role Relationships and Management Structures 101

e Archive Administrator: responsible for the archiving of the data in the central log
repository. It may interact with the regional security inspector, in case of problems or
anomalies with the archiving system.

¢ Inventory Administrator: responsible for the provision of log data from the various
domain networks.

e Collector: this role exists for each of the local network sites. Occupants of this role are
authorised to access the log receive units to collect data received from the SNs. It interacts
with the security inspector at the local network site level, through an inspection relationship
involving the collection of data.

* Log Data Expert: each local network site has more than one as required. The data expert is
authorised to use the structure editor tool to create a structured format of the raw log data

received from the various SNs.

Figure 4.10 demonstrates the formation of management structures out of the roles and relationships
described above. A management structure type is defined to model the configuration of the roles
and relationships in a site network and then instantiated for each of the sites with the appropriate
parameters. A second management structure is used to model the configuration of roles and
relationships for a regional network. This outer management structure includes the instances of the
first management structure for each of the site networks on the region. In the following we outline
the policy specification for the management structures assuming that there are three site networks
for a regional network. We do not present the individual policies that are part of the roles and
relationships. Roles contain the appropriate authorisation policies to enable the occupant of the role
to access the parts of the network and the tools required. Obligations that are not part of
relationships (i.e. which are not obligations of a role occupant towards another) are also specified
within the roles as needed. Relationships include those obligations of a role towards another (e.g.
reporting functions on certain events like time-periods), as well as any authorisations of one role
towards another (e.g. what methods the occupant of a role can execute on the occupant of another

role in order to request functions or information).

/1 The managenent structure which nodels the security quality assurance system part
/1 for a single site network. The structure is paraneterised with the donain
/'l representing the site, and a reference to the | og database of the network

type mstruct siteStructureT(domain site, Local LogDB | ogDB) ({
/'l define role types
type role secutirylnspectorT(domain site, Local LogDB |ogDB) { ...}
type role collectorT(domain site, Local LogDB |ogDB) { ...}
type rol e | ogbat aExpert T(donai n site, Local LogDB | ogDB, Sw tchNetworkType snType) {..}

/1 define rel ationships types
type rel inspectionT(role seclnsp, role col) { ..}
type rel logStructureT(role seclnsp, role logExprt) { ...}

/'l create instances for the roles

inst role securitylnspector = securitylnspectorT(site, |0gDB);

inst role collector = collectorT(site, |0ogDB);

inst role | ogDat aExpert1l = | ogDat aExpert T(site, |ogDB, SienensEWSD);

www.manaraa.com

102 Chapter 4. Composite Policy Features

inst role | ogDataExpert2 = | ogDat aExpertT(site, |ogDB, Alcatel S12);

/'l create instances for the relationships

inst rel inspection = inspectionT(securitylnspector, collector);

inst rel logStructurel = |ogStructureT(securitylnspector, |ogDataExpertl);
inst rel logStructure2 = |ogStructureT(securitylnspector, |ogDataExpert?2);

}

Each of the roles in the siteStructureT management structure type, is parameterised with the site domain and the reference
to the log database used for the local data logs. These parameters are passed to the management structure instantiation
and are then used in the instantiation of the roles inside the management structure. They then act as the target for policies
inside the roles. Note that the logDataExpertT role type also requires the type of the switch nodes which will be
monitored. Some of the obligation policy actions inside the role may depend on the type of node from which the logs are
received. Since there are two log data expert roles, two logStructure relationships are instantiated between the security
inspector and the log experts.

/1 The managenent structure which nodels the security quality assurance system part
/Il for a single region of the tel ecommunications network. The structure is
/| paraneterised with the domain representing the region

type mstruct siteQualityAssuranceT(domain region) {
/'l paths to the three site domain networks of this site
donain sitel = region.getDomain(“/sitel”);
donmi n site2 regi on. get Domai n(“/site2”);
donmi n site3 regi on. get Domai n(“/site3”);

/'l define role types

type rol e archiveAdm nT(DB central Log) { ... }

type role inventoryAdm nT(DB central Log, domain netl, domain net2, domain net3) { ..}
type rol e eval uati onManager T(DB attackPatternDB) { ...}

/1 define rel ationships types

type rel evaluationT(role seclnsp, role evalMan) { ...}
type rel archiveT(role seclnsp, role archAdmn) { ..}
type rel collectionT(role invAdmn, role col) { ..}

/'l create instances for the roles
inst role siteSeclnspector = domai nStructureT.securitylnspectorT(site.get(“logDB"));
inst role archiveAdm n = archiveAdnm nT(site.get(“central Log"));
inst rol e eval Manager = eval uati onManager T(site. get(“patternLog”));
inst role inventoryAdmi n = inventoryAdm nT(site. get(“central Log”),
regionl, region2, region3);

/'l create instances for the relationships which exist between roles
/1 at the level of the site network

inst rel siteEvaluation = evaluationT(siteSeclnspector, eval Manager);
inst rel archive = archiveT(siteSeclnspector, archiveAdni n);

/'l createthe instances for the site nanagenent structures

/1l Each of the managenent structures is paranmeterised with the site part

/'l relative to the region paraneter which is a formal paranmeter of the current
/'l managenent structure
inst netruct sitelStruct
inst netruct site2Struct
inst mstruct site3Struct

donmai nStructureT(sitel, sitel.get(“logDB"));
donmai nStructureT(site2, site2.get(“logDB"));
domai nStructureT(site3, site3.get(“logDB"));

/| create the relationships between the roles which involve those of

/1 the inner managenment structures

inst rel evaluationl = evaluationT(sitelStruct.securitylnspector, eval Manager);
inst rel evaluation2 eval uationT(site2Struct.securitylnspector, eval Manager);
inst rel evaluation3 eval uati onT(site3Struct.securityl nspector, eval Manager);

inst rel collectionl
inst rel collection2
inst rel collection3

col l ectionT(inventoryAdmi n, sitelStruct.collector);
col l ectionT(inventoryAdm n, site2Struct.collector);
col l ectionT(inventoryAdm n, site3Struct.collector);

}

Notice that the regional security inspector for the region management structure is instantiated from the role definition of
the security inspector (securitylnspectorT) defined in siteStructureT.

www.manaraa.com

Section 4.5. Meta Policies 103

45 Meta Policies

The validity of a policy may depend on other policies existing or running in the system within the
same scope or context. These conditions are usually impossible or impractical to specify as part of
each policy and therefore need to be specified as part of a group of policies. Meta-policies specify
constraints over a set of policies, on the permitted types of policies or their policy elements. These
constraints apply to policies within a specific scope, and limit the permitted policies in the system,
or disallow the simultaneous execution of conflicting policies. Meta-policies can be defined within
a composite-policy to apply to all policies within the scope of the composite policy. Alternatively
they may apply to all policies within a domain sub-tree. The syntax of a meta-policy is based on the
syntax of the object constraint language (OCL). The body of a meta-policy specifies the constraint
as a series of OCL expressions separated by semicolons. The expressions can be boolean or
navigation expressions. If any of the boolean expressions evaluates to t r ue, execution stops, and
the action following the raises-clause is executed. This way, a series of related constraints can be
specified within the same meta-policy. Note that the result of an OCL expression can be named so
that it can be passed to the exception action as a parameter (see examples), or reused in subsequent

constraint expressions.

A meta-policy can also be used to specify concurrency constraints on the mandatory sequencing,
and permitted parallelism of activities, or to forbid the overlap of certain activities. When used for
concurrency constraint specification, a meta-policy does not specify the raises-clause, and its body
consists of a series of concurrency constraint expressions. A concurrency constraint expression
specifies a sequence of activities separated with concurrency constraints. The concurrency
constraints and their semantics are the same as those used in obligation policy actions (see Section
3.4.1). An activity is either:

¢ Anaction in an obligation policy

¢ Anobligation policy

In the latter case, this implies that all the actions of the obligation policy are subject to the

concurrency constraint specified (See examples that follow).

inst neta netaPol Nane raises exception [(paraneters)] {
{ OCL-expression | [identifier] = OCL-expression } |
{ concurrency-expression }
}
concurrency-expression = activity (->| | | || | &) concurrency-expression
activity = [path .] identifier {. identifier}

Figure 4.11 Meta-policy syntax

The examples in the following subsection indicate how meta-policies can be used to specify

application dependent constraints on groups of policies.

www.manaraa.com

104 Chapter 4. Composite Policy Features

4.5.1 Constraint Policy Examples

We have presented examples in Chapter 3 to show how Ponder can be used to represent many of
the security policies available in the literature. We now show some additional examples of policies
that can be expressed in our language related to specifying constraints on sets of policies specified

in composite structures, to complement those presented in Section 3.6.

Constraints on Elements of Policies

The following example shows a meta-policy used within a role to specify a simple constraint on the
policies within the role; in this case, a constraint on the instantiation of the role: the number of

patients for which the nurse is responsible must be less than 10.

type rol e nurseT(set <patient> p) {
inst auth+ neal Schedul e {
target p;
action updateMeal Schedul e;

}
inst oblig adm nister {

target p;

on Ti me. at (“08: 00: 00") ;

do adm ni sterDrugs() -> checkTenperature();
}

inst meta maxNoOf Patients raises errorlnPatients(p) {
p->si ze < 10;
}

}

Static Separation of Duty

The following examples show how to specify a static separation of duties to prevent the same

person from being authorised to perform actions marked as conflicting.

inst neta budgetDutyConflict raises conflictlnBudget(z) {
[z] =this.policies -> select (pa, pb |
pa. subject -> intersection (pb.subject)->notEnpty and
pa.action -> exists (act | act.name = “submit”) and
pb.action -> exists (act | act.name = “approve”) and
pb.target -> intersection (pa.target)->ocl|sKindO (budget))
z -> notEnpty ;
}

This metapolicy prevents a conflict of duty in which the same person both approves and submits a budget. It searches for
policies with the same subject acting on a target budget in which there is an action submit and approve.

We specify a generic meta-policy type, shown below, that can be used to create various instances

of the static separation of duty principle involving two actions.

type neta dutyConflictT(actl, act2, tarType) raises conflictSepD(z) {
[z] = this.policies->select(pa, pb |

pa. subj ect - >i nt ersecti on(pb. subj ect) - >not Enpt y and
pa. action->exi sts(act | act.nane = actl) and
pb. acti on->exi sts(act | act.name = act?2) and

pb.target->intersection(pa.target)-> ocl|sKi ndO (tarType)) ;

z -> not Enpty;
}

inst neta dc = dutyConflictT("“execute”, “authorise”, “paynent”);
meta bwbc = dutyConflictT("“addBandw dth”, “use”, “service”);

www.manaraa.com

Section 4.5. Meta Policies 105

inst oblig notifyConflict {
subj ect policyService;
on conflictSepz);
do pol i cyServi ce. noti fy(nmanager);

}

Two actions and a target type are passed as parameters to the meta-policy. Within its body, the meta-policy checks all
pairs of policies in its scope, for possible conflicts. If there exists a pair of policies with common subjects, who have
actions actl and act2 respectively in their action entry, and whose target intersection is of the given tarType, then there is
a conflict and the conflict action conflictSepD(z) is called. This action takes the set of pairs of policies resulting in
conflict (the result of the OCL expression) as a parameter, so that it can act on them. In order to check the type of the
target intersection we use the oclIsKindOf method defined in OCL.

The following example is another instance of a static separation of duty, which involves the

assignment of users to roles.

type meta rol eAssignnent(role rl, role r2) raises inconpatibleRoles(rl, r2, users) {
[users] = rl.subjectDomain -> intersection (r2.subjectDonain)
users->not Enpty

}

inst neta accountingRol es = rol eAssi gnnent (/rol es/ Accountant, /rol es/FinanceDirector);

The roles Accountant and FinanceDirector in a specific organisation are marked as conflicting, so no user can be assigned
to both. The meta policy type checks that the subject domains of the two roles have no common elements.

Self-Management

“There should be no policy authorising a manager to retract policies for which he is the subject”,
from [Lupu 1998]. This happens within a single authorisation policy with overlapping subjects and

targets. A meta-policy can be used to specify this as follows:

inst neta sel f Managenent1l raises sel fvhgmt Conflict(pol) {
[pol] = this.authorisations -> select (p | p.action->exists (a |
a.name = "retract" and a.paraneter -> exists (pl |
pl. ocl Type. nane = "policy" and pl.subject = p.subject))) ;
pol - >not Enpty ;
}

The body of the policy contains two OCL expressions. The first one operates on the set of authorisations in the meta
policy container (a composite policy), referred to by “this”. It selects all policies (p) with the following characteristics:
the action set of p contains an action named “retract”, and whose parameters include a policy object with the same subject
as the subject of policy p. The second OCL expression is a boolean expression; it returns true if the pol variable, which is
returned from the first OCL expression is not empty. If the result of this last expression is true, the exception specified in
the raises-clause executes. It receives the pol set with the conflicting policies as a parameter

Prerequisite Roles

Prerequisite roles is a type of constraint identified in [Sandhu et al. 1996] whereby a user can be
assigned to role A only if the user is already assigned to role B. This can be translated into: user U
can only become a member of the subject domain of role A if it is already a member of the subject

domain of role B. Here is how it can be specified as a meta policy:

type neta prerequisiteRoles(role rl, role r2) raises assignmenError(rl, r2, users) {
[users] = rl.subjectDomain - (r2.subjectDonain);
users->not Enpty

}

inst neta Rol es = rol eAssi gnment (/rol es/ HeadOf Depart ment, /rol es/ Professor);

The roles Professor and HeadOfDepartment in a university setting are prerequisites. A user cannot be assigned to the
head of the department role unless that user is already assigned to the professor role. The meta policy type defined checks
that the subject domain of the HeadOfDepartment role contains any elements (users) not in the subject domain of the

www.manaraa.com

106 Chapter 4. Composite Policy Features

Professor role. If that set is not empty then the resulting set of users have been erroneously assigned to the
headOfDepartment role. We assume an attribute called “subjectDomain” which can be accessed on each role object to get
the subject domain of the role.

User-Role Assignment Cardinality Constraints

This kind of constraint restricts the number of users assigned to a role [Sandhu et al. 1996]. It can
be specified inside a role if we know at specification time, the maximum number of users that can

be assigned for that role. Otherwise it can be specified outside the role.

type nmeta maxUsersT(role r, int max) raises maxUserLimt(r) {
[users] = r.subjectDomain;
users->size > max;

}

inst neta maxUsersl = maxUsersT(/rol es/ SecurityAuditor, 1);

The example above shows a single meta-policy instance created from a generic meta-policy type, which handles the user-
role assignment cardinality constraints. The example specifies that only one user can be assigned to the SecurityAuditor
role.

Concurrency Constraints

This following example, demonstrates the use of a meta-policy to specify concurrency constraints
which involve a set of policies. The paymentConcurrency meta-policy in the example, specifies

two concurrency constraints which involve individual actions between different policies.

inst role accountant {

inst oblig paynent Pol {

on paynment Request (p);

target t = Payments_registry;

do t.regi sterPaynent (p) || t.updateRecords(p);
}
inst oblig chequel ssuePol {

on payment Transactionlnit(t);

target db = backupDB;

do i ssueCheque() || db.backupRecords(t);
}

inst nmeta payment Concurrency {
/'l must register paynent before issuing the cheque
paynent Pol . regi st er Paynent -> chequel ssuePol . i ssueCheque;
/| cannot update and backup records at the sane tine
(paynent Pol . updat eRecords -> chequel ssuePol . backupRecords) |
(chequel ssuePol . backupRecords -> paynent Pol . updat eRecor ds)

}

History-based Access Control

History-based access control policies [Acharya et al. 1998] can be expressed in our language
assuming the existence of an event-history monitoring system, which will be used by the policies to
access information about events that happened in the past. Examples of such policies include the

following:

Joint action based authorisation policies: “Three out of five users which possess a certain role

must vote in-favour, for a subject to be permitted to execute an action”. [Varadharajan et al. 1996].

www.manaraa.com

Section 4.5. Meta Policies 107

This is a form of backing policy which was presented in Section 3.6, which can be specified using a
combination of authorisation and obligation policies. In Ponder this type of policy can also be

specified as a constraint on the authorisation policy because it involves a single access right:

inst role doctor {
inst auth+ adm tPatient {
target t = /servers/patientRecords;
action adnmitPatient(x);
when votingServer.get Admt (“yes”, Xx) > doctor.subjectDomai n->size() / 2;

}

The above example allows an occupant of the doctor role to admit a patient to the hospital if more than half of the other
doctors (i.e. the other users which possess the doctor role) also agree.

Limiting resource usage: “At most 5 disk partitions can be used for back-up activities”. [Lupu
1998]. Again, this policy does not restrict the specification of policies in the system, but rather the

execution of actions based on object attribute values.

type rol e backupAdm nT(BackupControl |l erT backupController) {
i nst aut h+ backupRestrict {
action backup ;
target t = /server/backup ;
when backupControl l er.partitionsUsed(t) < 5 ;

}

A backup administrator is permitted to perform a backup operation on a certain backup server, only if the number of
partitions used on that server is less than 5. The backupController server object provides information about the backing
process and is passed as a parameter to the role.

Based on previous actions: “A program can open local files for reading only if it has not opened a
socket”. This is similar to a dynamic separation of duty policy, and is thus specified as a constraint

on authorisation policies. Examples of this have been presented in Section 3.6.

Closed/Open Policies as Meta-Policies

One way of modelling the classical closed and open policies was described in Section 3.6.
However, meta-policies can also be used to specify a closed or open policy similar to the way
integrity rules are used in ASL [Jajodia et al. 1997]. The following example demonstrates how a
simple meta-policy can be used to customise the access control decision mechanism based on the

existence of positive or negative authorisation policies.

type neta cl osedPolicyType(domain path, s, t, a) raises accept() {
path -> exists (p | p.type == “auth+” and
p. subj ect - >exi sts(s) and p.target->exists(t) and p.action->exists(a))

}
type neta openPolicyType(domain path, s, t, a) raises accept() {
path -> exists (p | p.type == “auth-" and
p. subj ect - >exi sts(s) and p.target->exists(t) and p.action->exists(a)) != true ;
}

The first meta-policy closedPolicyType raises an accept exception if the set of authorisations under the given path
contains at least one positive authorisation policy which allows the execution of action a from subject s on target t. The
openPolicyType raises an accept exception if the set of authorisation policies under the given path do not contain a
negative authorisation policy which disallows the execution of action a from subject s on target t. Note that the path can
be the root of the policy hierarchy to apply the closed (open) policy on all domains in the system. The two meta-policies

www.manaraa.com

108 Chapter 4. Composite Policy Features

can then be distributed to the relevant access control agents which will instantiate them and interpret them every time an
access decision is requested.

4.6 Additional Language Features

The Ponder framework is self-managed in that policies and other constructs such as roles and
relationships are implemented as objects stored within domains. Authorisation policies can
therefore be used to specify who is permitted to add, delete or edit policies, as has been
demonstrated in some of the examples presented. Furthermore, obligation policies can be used to
specify what actions must be performed on policy objects when certain events occur. For example,
obligation policies can be specified to enable new policies or disable existing ones in order to adapt
to new circumstances such as failures, emergency conditions, etc. In addition, human managers or
automated components that are subjects for a set of policies may in turn, be managed by other
managers based on a different set of policies, and thus become targets. We thus avoid the use of
administrative roles as proposed in the RBAC models [Sandhu et al. 1996] to manage a set of
roles. Roles and other composite policies are themselves objects and can be managed by the

policies specified in other roles.

The class hierarchy of the language (see Appendix A) allows new policy types that may be
identified in the future to be defined as sub-classes of existing policy types. This includes both
basic policies (Figure 3.1) and composite policies (Figure 4.1) and makes it easier to extend the
language, a design goal identified in Section 1.2. In addition, the model provides a convenient
means of translating policies to structured representation languages such as XML. The XML
representation can then be used for viewing policy information with standard browsers or as a
means of exchanging policies between different managers or administrative domains. The DMTF

have already engaged in the specification of a mapping of CIM to XML [DMTF 1999b].

Import statements can be used to import definitions such as constants, constraints and events, from
external Ponder specifications stored in domains, into the current specification. This allows reuse
of common specifications and minimises errors that arise due to multiple definitions. The following
example shows how an event specification can be reused.
i nst group /groups/groupA {

event e(userld) = 3*loginfail (userid) ;

/1 other common specifications & basic-policies }

inst group groupB {
i mport /groups/groupA ;

inst oblig FlexiblelLoginFailure {
on e(userld)| ! oginTi meQut (userld);
subj ect s = /NRegi on/ SecAdni n ;
target t = /NRegion/users " {userid} ;
do s.log(userid);

www.manaraa.com

Section 4.6. Additional Language Features 109

GroupB imports the specification groupA from the /groups domain (where it is stored), and reuses the specification of the
event e(userld) defined within loginFailure. The event of the new obligation policy is now 3 consecutive loginfail events
or a loginTimeOut event, which is triggered when the user takes too long to enter the password after the prompt.

4.6.1 Example Composite Policy Specification

The example below demonstrates the structure of a policy specification. Import and domain
statements can be placed anywhere within the specification. We deliberately show how this small
example can be specified in different files, to demonstrate the use of import statements. Note that
type and instance definitions can be nested. The example is an extract from Chapter 8 in [Lupu
1998]. In this example a help-desk role type (helpDeskT) is defined for a cellular GSM network
company. Suppose that the network is divided into regions and each region is further subdivided
into branches. Each region has a database called EIR (Equipment Identity Database) for the
equipment of the region. Each branch has a database called HLR (Home Location Register) for the

subscribers to the network.

The helpDeskT role includes an obligation policy (customer complaints) to handle customer
complaints; a group Alr_managementT specifying policies that relate to the management of an HLR
database for a branch; a group billing and abnormal that contains policies related to cases of
unpaid bills, stolen equipment etc. The first group is created as a type and then instantiated for the
various HLR databases corresponding to each branch. The authorisation policies that authorise the
access to the HLR and EIR databases are not specified directly within the role. They are instead
specified as a group HD_authorisationsT outside the role. This could be the case if there is a need
to reuse those authorisations in other roles or anywhere else within the policy specification. The
role helpDeskT then imports the HD authorisationsT group, and instantiates it for the different

HLR and EIR databases to which it needs access.

File 1

donmmi n / policies/groups/types; /'l set the current working donain
type group HD authorisationsT (set hd, HLR type hlr, EIR type eir) {

inst auth+ HD auth_HLR {
subj ect hd;
target hir;
action add_new custoner(), update_record(), traceHoneSubscriberl|nHLR();

}

inst auth+ HD auth_EIR {
subj ect hd;
target eir;
action blacklistEquiprent();

}
} // HD_authorisationsT

File 2

domain /tr/rr/rc/HD; /'l set the current working donain
type rol e hel pDeskT(EIR type eir) {

import /policies/groups/types/HD authorisationsT; //inmport the HD authorisationsT group

inst oblig customer_conplaints {

www.manaraa.com

110 Chapter 4. Composite Policy Features

on cust omer _conpl ai nt (conpl ai nt);
do hel pDeskT. i nvesti gate_conpl ai nt (conpl ai nt);

}
type group hlr_managenent T(HLR_ type hlr) {

inst oblig record_update {

on new_servi ce_subscri ption(x);
do updat eRecor d(x. cust omer, X.service);
target hilr;

}
inst oblig consistency_loss {
on unrecogni sed_custoner _i n_HLR(i nsi) ;
do hl r_managenent T. checkRecord(i nsi);
} // hlr_managenment T

inst group hlr_nanagenent Br A
group hlr_managenent Br B

hl r _managenent T(hl r _branchA);
hl r _managenent T(hl r _branchB) ;

inst group billing_and_abnornmal {

inst oblig notify_subscriber {

on unpai d_bills(inmsi);
do noti f ySubscri ber (insi);
target enumil Server;

}

inst oblig stol en_equi pnent {
on reported_stol en(inei);
do bl ackLi st Equi pnent (i nei) ;
target eir;

} /7 billing_and_abnor nmal

inst group hlr_authl
group hlr_auth2
} /1 hel pDeskT

HD_aut horisationsT(this.pd, hlr_branchA eir);
HD_aut horisationsT(this.pd, hlr_branchB, eir);

donai n rol es/ Hel pDesk; /'l change the current working domain

inst role hel pDeskRegi onA
rol e hel pDeskRegi onB

hel pDeskT(eir_regi onA) @ pd/ HY HD1,;
hel pDeskT(ei r_regi onB) @ pd/ HD/ HD2;

Figure 4.12 Example policy specification

4.7 Conclusions

In this chapter we have presented features of the language which allow composition of the basic
policies presented in Chapter 3. The reasons for composing basic policies are twofold: Reusability
of related policy specifications, and modelling of organisational concepts such as roles,

relationships and management structures. The composite policy types are:

* Group: A syntactic scope used to group related policies together.

* Role: A semantic grouping of policies, which have the same subject. Roles provide the
means of grouping policies related to a position in an organisation such as a staff member,
customer support manager or Chief Executive Officer (CEQ). A role can also group
policies relating to a specific automated agent such as one that registers new users or
adaptively manages Quality of Service in a network.

e Relationship: A grouping of policies pertaining to the interactions between roles.

www.manaraa.com

Section 4.7. Conclusions 111

e Management structure: A configuration of roles and relationships into organisational units.

We introduced simple inheritance for the composite policy types and demonstrated its use to model

organisational role hierarchies.

We revisited the issue of expressiveness by presenting a series of application specific constraints
that can be specified for groups of policies using meta-policies. Meta-policies are constraints over a
set of policies, either policies within a policy grouping or policies within a domain, and prove to be

very powerful in specifying a large range or application specific constraints.

Self-management and extensibility are two of the important features of the language. Policies can
be specified to control operations on other policies and domains. New types of policy that may be
identified in the future can be added to the language object model to extend the language.
Examples of new types of policies include: (i) freedom policies to permit a subject to override
obligation policies e.g., an operator can override an obligation policy if she thinks there is a safety
reason for doing so. These are more important for human-based policies than for automated
systems and are often specified in safety-critical systems. (ii) Resource allocation policies t0
specify limits on the resources to be allocated to a session or to a service e.g., no more than 10% of

available bandwidth can be allocated to a single request.

Further work remains to be done in the area of interaction protocol specification to complete the
definition of relationships. However, the significance of roles, relationships and management
structures in modelling organisational policies and structuring large-scale policy specifications has

been demonstrated using examples.

Information about the policy language and its applications have already been published [Damianou
et al. 2000a; Lupu et al. 2000a; Damianou et al. 2000b; Lupu et al. 2000b; Damianou et al. 2001;
Dulay et al. 2001a; Dulay et al. 2001b].

www.manaraa.com

Chapter 5

A Structural Operational Semantics

5.1 Introduction

We give an operational semantics to the policy language presented in the previous chapters by
exploring the object-oriented nature of the language. The formal semantics is divided based on the
different phases of the execution of a Ponder specification (also referred to as a program) as
demonstrated in Figure 5.1. A policy is specified, syntactically and semantically analysed and type
checked, and then stored in the domain system as a policy object. The stored policy objects can
then be distributed to the components responsible for their enforcement. The runtime execution of a
policy takes place in the scope of the enforcement component (i.e. management components and

access controllers) in which the policy runs, and involves accessing the domain system.

Specification

Structural Operational

{ Policy Specification (Program) }—»{ Compiler } Semantics

and Type Inference System

Domain Storage

[Managed objects ‘ ‘ Policy objects] Formal Domain System

Model

Runtime Execution

Structural Operational
Semantics

‘ Management components ‘ ‘ Access controllers J

Figure 5.1 Overall semantics system

In this chapter we do not specify the static semantics of the language (i.e. a type inference system)
to perform compile-time type checking for Ponder programs; we leave this for future work. We use
a structural operational semantics approach to specify the dynamic semantics of policy
specifications. With the dynamic semantics we address the execution of policies, including the
evaluation of expressions, and the execution of commands in the policy system. The operational
semantics also cover the specification of policy types and their instantiation. We formalise the
domain system using Alloy [Jackson 2000], an object modelling notation. Alloy is suitable for
describing structural properties but not dynamic interactions between objects, and is particularly
suitable for describing hierarchical systems such as file systems, graphs etc. We have found it

clearer to specify the semantics of the domain system using Alloy. However, a structural

112

www.manaraa.com

Section 5.2. Overall Structure of the Operational Semantics 113

operational approach is more suitable for the dynamic semantics of Ponder. Structural operational
semantics is an operational method specifying semantics based on syntactic transformations of
programs. This enables us to describe the execution of Ponder policies based on the syntax of the
language, making it easier to relate the specification of the semantics to an actual implementation
of Ponder. Our approach is inspired by that used in [Drossopoulou et al. 1998] which specifies the
operational semantics and a type inference system for a large subset of Java. We choose small-step
semantics [Hennessy 1990] because we believe that this makes the specification of the semantics
more intuitive, and enables a detailed description of the execution for features such as authorisation

filters and concurrency constraints.

Where necessary, we specify some restrictions on the syntax of Ponder, which simplify the
specifications, but do not compromise or change the semantics of the language in any way. A
straightforward transformation turns a Ponder program to the syntax used in this chapter. We
distinguish between these restrictions and the features of the language which we do not cover, and
indicate this in the text. The semantics is specified for the abstract syntax of Ponder which is
included in Appendix C. For clarity reasons we omit some of rules of the operational semantics

from the discussion in this chapter. The complete set of rules can also be found in Appendix C.

5.2 Overall Structure of the Operational Semantics

Configuration ::= (Ponder term state, store U (state, store U grant U deny
b : Configuration - Configuration

state ::= (ldent - Value)” U (RefValue - PolicyQbject)”

store ::= (Path - PolicyOhject)” U (Path - TypeDef)"

Pol i cyQoj ect ::= <(Label Name = EExpr)”, state=(“enabl ed”|”disabl ed”)>™Pr®

Figure 5.2 Configurations and transition rules

The operational semantics is based on a transition system, which maps configurations to new
configurations, for a given Ponder program. Configurations consist of a Ponder term, a state and a
store or just a state and a store. The grant and deny are special terminal configurations and are
introduced later. The szate is defined as a flat structure; it consists of mappings from identifiers to
primitive values or to references, and from references to objects which can be runtime objects or
policies. We eliminate block structure and local variables in order to avoid the use of additional
structures such as program counters and higher order functions in specifying the semantics. The
store is the repository for policy objects and policy types, as well as for other managed objects in
the system. It maps domain paths to either policy objects or policy type definitions. We use the

term path to refer to a domain path in this chapter.

www.manaraa.com

114 Chapter 5. A Structural Operational Semantics

A policy object is represented as a sequence of labels and associated expressions, corresponding to
the elements of a policy object (i.e. subject, target, action etc.). Apart from the standard policy
elements, an additional label called state is added to hold the state of the object (i.e. enabled or
disabled). See the abstract syntax in Appendix C for a specification of the types of expressions that
are assigned to the labels of a policy object (i.e. element expressions EExpr). A policy object is
annotated with the full path of the type from which it is instantiated. A policy type definition is

retained in its textual format as specified in the abstract syntax, and stored as is.

A rule has the format shown below; it consists of a sequence of propositions (P;) above the
horizontal line and a transition relation below the line, which holds only if all propositions P, are
true. Note that the propositions can also be transitions. Rules are assigned names for reference

purposes.
P, ..P,

(config) O (configs) (rule name)

In some of the rules, we use propositions using the existential quantifiers [Jand . These have the
following format:
e Ox Os (p; & p, ..&& p,), is true if propositions p; are all true for at least one element
in the finite set s.
e Ox Os (p1 & p, .&& py), IS true if propositions p; are all true for all elements in the

finite set s.

We sometimes use the following transition relation: Config, - * Confi g,, Where Confi g, and
Conf i g, are configurations as defined above, to indicate a finite number of applications of the .

transition relation, which takes us from Confi g, t0 Confi g,. More formally . is defined as
follows: If config, Configy, .. Config, IS a finite sequence of configurations satisfying:

Config; O- Configj. for 0 <i <k, k > 0thencConfig, &~ * Confi g,.

For the execution of obligation policies, which involve events, we introduce a second transition
system to include the event histories associated with the obligation policies (Section 5.5). Refrain
policies are evaluated using that transition system too, as they are seen as filters on the execution of

obligation policies within the context of management components.

5.2.1 Lookup Functions, State, Store and Object Operations

We define the following operations on states, stores and policy objects. For a program P, a state o,

a store A and a policy object pol = <e, = EExpry, .., e, = EExpr>""® we define:

New state, o; = o[ry— Obj], such that:
oi(ri) = j, o1(ry) = o(ry) for ry #r,

www.manaraa.com

Section 5.2. Overall Structure of the Operational Semantics 115

New state, o, = of z—val], such that:
o,(z) = val, o0y(zy) = o0o(z,) for z; #z

To access the element e of an object stored at reference r;, in state o:
o(ri, e) =o(ri)(e)

To access a policy element e:
pol (e) = EExpr; if e = e, pol(e) = Undefined, otherwise
€.0. pol (subject) = Dse

New policy object, pol ; = pol [e—val], new state, o, = ofr;, e—val]:
pol (e) = val, pol.(e;)) = pol(e,) if e # ey, o = o(ri—a(r;)[e—val])

To access a policy object pol =<e; = EExpry, .., e, = EExpr,>""°stored in pat h in store A
A(path) = pol, A(path;) = undefined if A(path;) = p and p is nota policy object.

New store, A; = A[pat h—pol], such that:
Aq(pat h) pol , A;(path;) = A(path,) for path; # path

New store, A, = A[pat h—t ypeDef], such that:
A(path) = typeDef, A (path;) = A(path,) for path,; # path

New policy object, pol ; = pol [e—val], hew store, A, = A[pat h—pol 4] :
A(path) = pol,, A(path;) = A(path;) for path, # path

The following functions will be useful for the operational semantics:
e Policies(A, policyType) returns all policies within the store A which are of type:
pol i cyType 0O {auth+, auth-, deleg+, deleg-, oblig, refrain}.
e Object(A, path) returns the runtime object (i.e. managed object reference) stored in the

store at the given path.

5.2.2 Modelling Runtime Commands

In order to describe the dynamic semantics of Ponder programs we model additional commands
(called runtime commands), which are directly related to the execution of Ponder policies. We view
these commands as part of an extended version of Ponder, called Ponderg in order to make the
specification of the semantics less complicated: Ponderg ::= Ponder + RuntinmeCormmands. The
transition system can then be used to specify their semantics in relation to other Ponder terms. We
describe the commands we want to model informally; a formal description can be found in
Appendix C:

+ enabl e(pat h) enables a policy stored in pat h in the store.

e disabl e(pat h) disables a policy stored in pat h in the store.

e exec(s, t, a, (v)") models the execution of action a with parameters v;, from subject s

on targett.

www.manaraa.com

116 Chapter 5. A Structural Operational Semantics

* exec(s, sety, a, (v)") models the execution of action a with parameters v;, from
subject s on all targets in target set set ;.

* exec(sets, sety, a, (v)") models the execution of action a with parameters v;, from all
subjects in set set ¢ on all targets in target set set ,.

e execFilter(s, t, a, (v)", filter) isthe same as the exec command. The difference
is that the filter expression given by the last argument, must be applied to the result of the
method execution.

 applyFilter(s, t, a, (v)", filter) is used only by the access control system to
indicate that the filter expression given by the last argument, must be applied to the
parameter values of the execution of method a froms tot.

e field(t, f) hides the details of accessing field f on runtime objectt .

 allows(pol, s, t, a (v)) Iisused to indicate whether the given policy (an auth+)
allows the execution of action a with parameters v; from subject s on target t . The result is
false if the policy doesn’t explicitly allow this action, or true if it does. If the policy also has
a filter expression associated with the action, then an execFilter command is returned
instead if the policy explicitly allows the action execution.

e disallows(pol, s, t, a) is used to indicate whether the given policy (an auth-)
disallows the execution of action a from subject s on target t. The result is false if the policy
doesn’t explicitly disallow the action execution or true otherwise.

e delegate(s, g, (a)”) executes the delegation of the actions given in the last parameter,

from the subject to the given grantee object.

Note that subject and target are actual references to runtime objects stored in A. We simplify the
policy life-cycle (introduced in [Marriott 1997]) and only model the enabling and disabling of
Ponder policies as shown in Figure 5.3. In other words we consider the policies as being enabled
once they are distributed to their enforcement components. When disabled, a policy is also
retracted from the enforcement components responsible for enforcing it. This simplifies the
specification of the semantics. We describe the policy life-cycle management in more detail in
Chapter 7.

Policy Type

Instantiate

Policy Type

Instantiate

Dormant <‘,:"> Dormant
Load Unload Disable ‘ ' Enable
| Loaded | Enabled
Disable ‘ \ Enable
Enabled

Figure 5.3 Policy life-cycle

www.manaraa.com

Section 5.3. Authorisation Policy Semantics 117

5.3 Authorisation Policy Semantics

We do not place any special restrictions on the access control system. We consider a classical
model in which access control is enforced by a reference monitor, which mediates every attempted
access by a user (or program executing on behalf of the user) to objects in the system [Sandhu et al.
1994]. Figure 5.4 from [Sandhu et al. 1994] shows the enforcement of access control within a
system at a logical level. Ponder is not concerned with authentication which ideally exists
separately from access control in a security system. In line with Ponder terminology we use the
term subject to refer to principals and users (or programs running on behalf of users), which
attempt to access objects in the system. We call the objects being accessed managed objects, target
objects or simply targets, and refer to a reference monitor as an access controller. One could
assume a single access controller for the entire system, or any number of distributed access
controllers each one responsible for a specific set of targets. The access control database is the

repository of authorisation policy objects, i.e. the store A.

Administration is an important part of an access control system. This has two aspects: The first is
the specification of policies to control access to already existing policies. This is handled implicitly
by the fact that policies are objects and as such can be managed objects as well. The second aspect

is the management of the policy life-cycle which is addressed in the semantics (see Section 5.3.4).

Access
control
database

Security Administration

administrator

I Managed objects
Subject Reference monitor | D
(Access controller)

Access control

Figure 5.4 Access control model

5.3.1 Program Execution, Types and Instantiation

We simplify the syntax of the policy language, in order to simplify the task of specifying the
semantics, as follows. Note that the full Ponder can be translated to the subset defined by these
restrictions:
« We allow constants to be specified only at the outer level in the syntax of the language. Not
within the scope of basic or composite policies.
< Although the elements of a policy can be specified in any order, we require that they are

specified in a fixed order here.

www.manaraa.com

118 Chapter 5. A Structural Operational Semantics

e We require that the constraint is not omitted; if it is, then #ue is specified instead.

* We require that paths are always absolute paths.

* We require that a policy instance is always instantiated from a policy type.

e We assume that an identifier is never assigned to the subject or the target domain scope
expression. If it is, then we replace that with a constant definition of type set.

subject id = Dse DECOMES: set id = Dse; subject Dse

« We convert the specification of the type of the subject/target into a constraint as follows:

subj ect <router> /path DECOMES: subject /path; when subject.oclistypeof(router);

« We do not allow a subject/target to be specified as part of the formal parameters of a type. A
set can be specified instead and then assigned to the subject/target element of the policy.

« We assume that a filter always has a condition associated with it. If not, rue is used instead.
Filters can cause ambiguity if there are more than one policies with an overlap of subjects,
targets and actions, with the same filter on the same action. In that case, the application of
filters on the execution of the action is non-deterministic, and depends on which policy is
evaluated first. In this specification we assume that there are no two positive authorisation
policies with an overlap of subjects, targets and actions and with the same filter on the same
action. This can be provided using analysis of the policies at specification time to prevent

the definition of the second policy.

We do not handle the following:

* We change the definition of constants which are user or external types to be just paths
instead of expressions.

« We omit prefixes to the actions to specify a specific object within the subject/target domain
instead of all objects

* We omit the import statement; it is not needed since all the paths are absolute.

* We omit the domain statement used to declare the current working domain; it is not needed
since all paths are absolute.

* We do not handle the definition of events and constraints.

The execution of a given Ponder program proceeds sequentially one statement at a time as
indicated by rules (programl), (program2) shown in Appendix C. A type definition is stored in the
store A under the specified path; this is described in the (type auth+) rule shown below. An
instantiation retrieves the type from the store A, evaluates the expressions passed as parameters to
the instantiation, replaces the evaluated values for those parameters in the body of the type, and
stores the result as a policy object in the store at the appropriate path. The state of the policy object
IS set to disabled. Note that the term t [t ,/ x] has the meaning of replacing the variable x by the

termt, in the termt. This is used in the (inst auth+) rule to replace the parameter identifiers with

www.manaraa.com

Section 5.3. Authorisation Policy Semantics 119

the actual values of the parameters in the body of the authorisation policy. The same rules apply for

negative authorisation, obligation and refrain policies.

N = Alpath/t — type auth+ path/t (T: X1, ..., Tn Xn) { Bauth+ }]

(type auth+)
(type auth+ path/t (Ti X1, ..., Tn Xn) { Bauth+ }, o, A - (o, N

z; are newidentifiers in o

rrisnewino

A(path/t) = type auth+ path/t (Ti: X1, ..., Tn Xn) { Bauth+ }
(¢, o, A O. " (val;, o1, A

0, = 0121 — val4] ..z, — val]

Baut h+; = Baut h+[z41/ X1, .., zn/ Xp][state — disabl ed]

03 = Oy[Iy — <Baut h+;>P2M

A, = Al pathy/ a — <Baut h+;>P20

- (inst auth+)
(inst auth+ path,/a = path/t(ei, .., eJ, o, A b (ri, 03 L

5.3.2 Action Execution, Access Control Decision

The following rules show how an access controller makes a decision to grant or deny an action
execution. We assume that there is only one (global) store for the policies, and introduce two
explicit configurations to represent the grant and deny states of the system. When the system
reaches the grant configuration on the execution of an action, this means that the execution is
granted. Similarly, the deny configuration means that the execution is denied. These are called
terminal configurations; in other words we do not provide any further details on the execution of

these system states.

If there exists a positive authorisation policy in the store which allows the action execution, and no
negative policy which disallows it, then the action execution is granted as described in the (exec
grant) rule. We use the execution of the command al | ows to determine whether a positive
authorisation allows a specific action execution. Similarly, we evaluate the execution of the
di sal | ows command to determine if a negative authorisation policy disallows an action execution.
We describe the execution of these two commands in more detail later in this section. If there exists
a filter associated with the authorisation policy which allows the action to execute, then the access
controller evaluates to an appl yFi | t er command instead of a simple grant as shown in (exec grant
filter). The execution of the appl yFi I t er is described later, and indicates that the action is granted,
but the specified filter must be applied to the parameters of the execution.

Opoly O Policies(Ad, auth+) ((allows(poli, s, t,a,vi.vy), 0, A [(true , o, A)
O pol, O Policies(A, auth-) ((disallows(pol, s, t, a), oo A b (false, g A) (exec

(exec(s,t,a,vi.vy), 0, A [grant grant)

O poly O Policies(Ad, auth+) ((allows(poly, s, t,a,vi.v,y), o, A
(appl yFilter(s,t,a, vi.vy, filterExpr), o, A)

O pol, O Policies(A, auth-) ((disallows(poly s, t, a), o, A 0. (false, o, A) éf;ﬁf
(exec(s,t,a,vi.vn), 0, A [~ (applyFilter(s,t,a,vi..v,, filterExpr), o, A filter)

www.manaraa.com

120 Chapter 5. A Structural Operational Semantics

If there exists a negative authorisation policy in the store that disallows the action execution, then
the execution of the action evaluates to deny (exec deny). The same is true if no policy is specified

for the action; in other words an action execution is denied by default as shown in (exec default).

O pol O Policies(A, auth-) ((disallows(pol, s, t, a), o0 A - (true, g A) (exec

(exec(s,t,a,Vvi..vy), 0, A [deny deny)
(exec

(exec(s,t,a,Vvi..vy), 0, A [deny defaul t)

Applying Authorisation Filters

The following two rules show the execution of the filters i.e. the execution of the appl yFilter
command. The filters are evaluated in order as shown by the first rule, and execution stops at the
first filter whose condition evaluates to true. The second rule shows that when the condition
expression (i.e. expr) of a filter evaluates to true, the expressions inside the filter are applied to the
parameter values of the action execution. The evaluation of that filter returns an execFilter
command, because the filters must be applied later to the result of the execution. The execFi | ter
command indicates that the action execution is granted, and is not elaborated any further in this
transition system as shown by the rule (auth exec filter done). We will see how it affects execution
of the exec command in the transition system for obligation policies (Section 5.5), where the filters

must be applied to the result of the execution.

filter, == if exprc {p1 = expri ...pn = €xpr,; result = expr,}
(expre, o, A O, (false, g1, A (auth exec
(appl yFilter(s, t, ba, vi.v,filter;.filtery), o A filter next)

(appl yFilter(s, t, ba, vi.vnfilterp filtery),os A

z; are new identifiers in o

filtery, == if exprc {p1 = expri ...pn = €xprn,; result = expr,}
(expre, o1, A [(true, 0z A

03 = O2[pr— Va] ..[pn — Vi]

expr’i = expri[vi/pi]
(expr’y, o3, A 0. "~ (v';, 03 A for | 0O {1.n} (auth exec
(appl yFilter(s, t, a, vi.vpfilter,.filtery), o A O filter)

(execFilter(s,t,a,v' 1.v',, filterExpr),os, A

(auth exec

(execFilter(s,t,a,vi..vp, filterExpr) o, A - (o, A filter done)

We now describe in more detail the execution of the command al | ows which determines whether
an auth+ policy allows an action execution, and that of di sal | ows which determines whether an
auth- policy disallows an action execution. The evaluation of both of these commands was used in
the rules described above to make an access control decision. Their execution involves evaluation
of the subject and target domain scope expressions, as well as evaluation of the policy constraints.
We introduce the helper functionfilter(a, pol), to return the filter expression for a given action

a in a given positive authorisation policy pol .

www.manaraa.com

Section 5.3. Authorisation Policy Semantics 121

The allows command

If there is no filter associated with the action of an al | ows command, it evaluates to either true or
false. If there is a filter then it evaluates either to an appl yFilter command if the action is
allowed, or to false. The rule (allows true) specifies that a policy pol , allows the execution of
action a froms to t if all of the following are true: (i) the policy is a positive authorisation, (ii) it is
enabled, (iii) s belongs to the subject set of the policy, (iv) t belongs to the target set of the policy,
(v) a belongs to the set of actions of the policy, and (vi) the constraint of the policy evaluates to
true. Note that in this rule, there is no filter associated with the action as specified by the last
proposition above the line. If there was a filter associated with action a then the execution would
evaluate to an appl yFi | ter command. This is described by the rule (allows true filter) found in

Appendix C.

pol O Policies(A, auth+)
pol (state) = enabl ed

(pol (subject), o, A . (sets, o A

s [sets

(pol (target), o, A [(sety, o, A

t O set;

a O pol (action)

ry, rpare newin o

Oy = 0[r;— t]

Oy = 01 r2— S]

(pol (constraint), o, A - (true , 0 A

filter(a, pol) == "" (allows true)

(al l ows(pol, s,t,a, vi.vp), o, A - (true, o, A

If any of the propositions described above is false, then the execution of al | ows evaluates to false.

This is described by the five rules shown below.

pol O Policies(A, auth+)

allows false 1
(al l ows(pol, s,t,a, vi.vy), o, A [(false, o, A ()

(pol (subject), o, A I (sets, o, A
s O sets (allows false 2)

(allows(pol, s,t,a, vi.vy), 0, A O (false, o, A

(pol (target), o, A [(sety, o A
t O set, (allows false 3)

(all ows(pol, s,t,a, vi.vy), 0, A O (false, o, A

a [pol (action)

allows false 4
(al l ows(pol, s,t,a, vi.vy), o, A [(false, o, A ()

ri, roarenewinao

Oy = 0[r;— t]

0, = 01[f2'—> S]

(pol (constraint), g,, A 0. <(false, 0 A (allows fal se 5)

(al l ows(pol, s,t,a, vi.vy), o, A [(false, o, A

In the rules: (allows true) and (allows false 5), before we evaluate the constraint of the policy, we
add the target and subject objects in the current state. That’s because the constraint may require the

target/subject object when being evaluated. If a constraint is either subject or target based, the

www.manaraa.com

122 Chapter 5. A Structural Operational Semantics

policy is not always valid or always invalid. It may be valid/invalid for each of the targets in the
target domain, independently. The example in Figure 5.5 shows how the given authorisation policy

is valid for one of the target objects but not for the other two.

inst auth+ A {
subject s
/T

target t
action ;
when (t.status = “active”);

' policy is valid only
{ for this object

inactive inactive active

Figure 5.5 Example constraint on target state

The disallows command

The evaluation of the disall ows command is very similar to the evaluation of the all ows
command. The only difference is that in this case the action parameters are irrelevant, and we are
not concerned with filters since negative authorisation policies do not have filters. The interested

reader can see Appendix C for the rules describing the execution of the di sal | ows command.

5.3.3 Constraints and Subject/Target Evaluations

The evaluation of the constraint, subject and target elements of a policy equates to the evaluation of
the corresponding expression or domain scope expression. The (constraint) rule specifies that in
order to evaluate the constraint of a policy, we evaluate the constraint-expression and return the
value of that execution. Similarly targets and subjects are evaluated to the set of objects to which

the corresponding domain scope expression evaluates, as shown in rules (subject) and (target).

pol (constraint) = expr
(expr, o, A 0. " (val, o, A

constraint
(pol (constraint), o A . (val, o, A ()

pol (subject) = dse
(dse, o, A O. " (set, o5, A

subj ect
(pol (subject), o, A [(set, o, A (subj)

pol (target) = dse
(dse, o, A 0. * (set, o5, A

t arget
(pol (target), o, A [(set, o0, A (get)

Expressions

We describe the rules that provide the operational semantics for the basic expression types in the
abstract syntax. The complete set of rules for the evaluation of expressions is given in Appendix C.
We call ground terms, those terms that cannot be further rewritten. A termt isgroundiff t isa
primitive value (i.e Pri mval ue), a set value (i.e. Set Val ue), or t =r; for some i (i.e. a reference).

We first show how constant definitions add new bindings to the state. This is demonstrated by the

www.manaraa.com

Section 5.3. Authorisation Policy Semantics 123

(primType) rule where an expression is assigned to a primitive type identifier (e..g Integer, String
etc). The rule evaluates the expression, and adds the identifier to the state o bound to the value to
which the expression evaluates. The rest of the constant types are evaluated in the same way and

can be found in the appendix.

(expr, o, A 0. " (val, o5, A

imr
(PrinfType id = expr, 0, A O- (oifid—val], A (prinype)

The abstract syntax for expressions defines the following expression types (see Appendix C):

Value | Var | Expr.methodNanme((Expr|Dse)’) | Expr.fieldName | OCLexpr.

The evaluation of values and variables is simple. Values do not need any evaluation, and variables
evaluate to the value to which the variable is bound in the state o. OCLexpr expressions are based
on the OCL syntax version 1.3 [OMG 1999b]. We assume the function eval OCL(o, A, OCLexpr)
which evaluates an OCLexpr using state o and store A. We do not cover the operational semantics of
the execution of the eval ocL function. Work towards the operational semantics of OCL can be

found in a number of recent papers: [Hami et al. 1998; Richters et al. 1998; Cengarle et al. 2001].

eval OCL(o, A, OClLexpr) = val

OCL
(CCLexpr, o, A - (val, o, A (expr)

The two remaining expression types are method calls and field accesses. We discuss the rules
which describe the execution of a method call; field access rules are very similar. The first thing
required for the execution of a method call is the evaluation of the parameters. The parameters (i.e.
expressions) are evaluated one at a time from left to right as shown in rule (method call 1).

val; is ground for j O {1..k-1}
(expry, o, A [, (expr'y, @, A

nethod call 1
(expri. m(val ,, ..,val .1, expry, .exprn), o, A [()

(expri. m(val , ..,val x.1, expr’'y, .exprn), o, A

After the parameters have been evaluated, the method call is essentially translated to an action
execution, modelled using the exec command. This means that the execution of a method call
during the evaluation of an expression (e.g. the constraint of a policy) results in actual calls in the

system which are also subject to the access control enforcement described previously.

There are three types of rules based on what the prefix expression of a method call evaluates to. If
the prefix expression evaluates to a reference then the target of the action call becomes the object
stored in state o at the evaluated reference, and its either a policy object, a subject object or a target
object as shown in rule (method call 2). If the prefix expression evaluates to a path, the target of the
action call is the object stored at A(pat h) (i.e. a runtime object) as shown in rule (method call 3).
Finally, if the prefix expression evaluates to an identifier then the target becomes the object to

which the identifier is bound in o as shown in rule (method call 4), i.e. o(i d) . Note that the subject

www.manaraa.com

124 Chapter 5. A Structural Operational Semantics

of the method call is always the current object in the context of which the expression is evaluated.
For example, this can be the access controller if the expression is evaluated as part of the constraint

of an authorisation policy during an access check.

this identifies the object in the context of which the call is made
(expry, o, A O- (ri, 01, A

- (method call 2)
(expri. m(val ,.val,), o, A [(exec(this, oi(ri), m val,. .val,)), o, A

this identifies the object in the context of which the call is made
(expri, o, A L (path, o, A
obj = oject (A, path)

. . (method call 3)
(expri. mval ,.val,), o, A b (exec(this, obj, m val...val,)), o1, A

this identifies the object in the context of which the call is made
(expr, o, A [, (id, o1, A

- - (method call 4)
(expri. m(val ;.val,), o, A [(exec(this, oi(id), m vali..val,)), o, A

Field access rules evaluate to a fi el d command (see Section 5.2.2) similarly to the way method
calls map to action executions (i.e. to the exec command). However, if the prefix expression
evaluates to a reference r;, then the field access simply evaluates to o(r;, f). Note that the
execution of the field command does not change the state or the store. The complete set of rules for

field access expressions can be found in Appendix C.

Domain Scope Expressions

We introduce the following functions to help in evaluating domain scope expressions:
e eval (path, A) returns the set of objects under the given path in A.
e eval @path, n, A) returns the set of objects under the given path in A, navigating up to n
levels deep, excluding domain objects.
e eval *(path, n, A) returns the set of objects under the given path in A, navigating up to n
levels deep, including domain objects.
e appl ySet Op(Set Op, set,, set,) applies the set operator Set Op to the two sets of objects:

set, and set ,.

The evaluation of domain scope expressions of type: path, *n path and @ path proceeds by
calling the corresponding eval method defined above. An action call on a domain object identified
by a path, is executed as an exec command, similar to how a method call is executed as shown in
rule (dse action call). A feature call expression is evaluated using the eval ocL function since it is
an oCLexpr as described in rule (dse feature call). This includes expressions of the form: subj ect

/ pat h;->select(s | s.state = “idle”);

obj = oject (A, path)

- - (dse action call)
(pat h. m(val ;.val,), o, A [~ (exec(this, obj, m vali..val,)), o A

eval OCL(g, A, path->featureCall) = {Ooj:.Mj} (dse feature

(path->featureCall, o, A O ({Obj;.00j.}, o, A call)

www.manaraa.com

Section 5.4. Delegation Policies 125

The evaluation of composite domain scope expressions of the form dse; set Op dse, proceeds by
first evaluating dse;, then dse,, and then calling the function appl ySet oo defined above to the

resulting sets. The complete set of rules for domain scope expressions can be found in Appendix C.

5.3.4 Policy Life-Cycle Commands

The following two rules show the execution of the enabl e and di sabl e commands, which control
the policy life cycle. The enable operation accesses the policy from the given path, changes the
state of the policy to enabled, and stores it back to the store A. The disable operation is executed in
the same way but changes the state to disabled. Note that the two rules shown below apply to all

types of policies; the only thing that changes is the first proposition of each rule.

pol O Policies(A, auth+)

pol = A(path)
pol 1 = pol [st at e—enabl ed]
A, = Al pat h—pol 4] (enabl e aut h+)

(enabl e(path), o, A O (o, N

pol O Policies(A, auth+)

pol = A(path)
pol ; = pol [st at e—di sabl ed]
A; = A pat h—pol 4] (di sabl e aut h+)

(di sabl e(path), o, A [(o, N

5.4 Delegation Policies

Before we proceed to the specification of the semantics for delegation policies, we identify some
restrictions to the syntax of delegation policies. Note that these restrictions do not change the
semantics of Ponder:
¢ The elements of the delegation policy are specified in a predetermined order.
e The specification of the valid-clause and the hops-clause for the positive delegation policy
is required. If not specified, true is assumed for the valid constraint, and -1 for the hops. We

assume —1 means no restriction on the number of cascading delegation hops.

We do not investigate the case of passing delegation policies as parameters, from which to derive

access rights, to other delegation policies.

5.4.1 Mapping Delegation to Authorisation Policies

In this section we describe informally how a delegation policy maps to authorisation policies; we
then present the transition rules for the operational semantics. The main problem with mapping a
delegation policy to authorisations will be the handling of the delegation constraints. Here is a

reminder of the various types of delegation constraints (see Section 3.3.4):

www.manaraa.com

126 Chapter 5. A Structural Operational Semantics

e Time restrictions (duration, validity period) to specify the duration or the period over which
the delegation should be valid before it is revoked.

* Any arbitrary constraint based on system attributes or subject/target/grantee or action
attributes.

e Maximum number of cascading delegations allowed (i.e. maximum number of delegation

hops or levels)

The first two types of constraints are specified using the valid-clause of a delegation policy. The
third one is specified separately as a humber following the hops-clause. We use the following
simple example to demonstrate the mapping of a delegation policy to authorisation policies.
Assume the following delegation policy (D;) and associated positive authorisation (A;), shown in

pseudo format below, wheres, 0'S, T, O T, del eg-actions O auth-actions.

inst auth+ A { inst deleg+ Di (A) {
subject S subj ect S;
target T target T,
action auth-actions grantee G
when C action del eg-actions
} when C
valid G
hops n

}
In our specification, we assume an authorisation service with the following interface:

e delegate(g, actionList) executes the delegation of the actions in the actionList to
the given grantee object g.

* revoke(g, actionList) executes the revocation of the actions in the acti onLi st from the
given object.

e cascading(d, g) returns the number of delegation hops performed with respect to the
given delegation policy d, starting at the given grantee object g. The same delegation policy
may have many different cascaded delegation paths as demonstrated in Figure 5.6. This

requires some book-keeping by the authorisation service.

subject scope target scope

Qo e

v

delegate

2 hops starting X Y)
from grantee X 3 hops starting
from grantee Y

grantee scope

Figure 5.6 Delegation hops

The authorisation policy (AD;) shown below is created when the delegation instance is compiled.
AD; authorises the subject s, (i.e. grantor) to execute the method 'del egat e' on the authorisation

service with grantee g as a parameter of the method in order to delegate the set of access rights (i.e.

www.manaraa.com

Section 5.4. Delegation Policies 127

acti onLi st) specified by the delegation policy (D,) to that grantee. Note that the number of hops
of D, is specified in the constraint of the generated policy AD;, and the when-clause constraint of
the delegation policy is ANDed to the constraint of AD;, to restrict its validity based to the validity
of the delegation policy. A negative delegation policy maps similarly to a negative authorisation
policy. In that case we don’t need to map the delegation hops though, since the negative delegation

policy does not specify hops.

inst auth+ AD; {

subject S

target AS = Aut hService

action del egate(g, actionlList)

when C, and G- >includes(g) and del eg-acti ons->i ncl udes(actionList) and

(AS. cascading(D;, g) < n)

}
The grantor may never exercise the right to delegate actions to a grantee. If it doesn’t, then access
control is based only on the existing authorisation policies. However, a second authorisation policy
(AD,) is dynamically created by the authorisation service when the action: del egat e(G acti on-
I'ist) is executed. This is true only for positive delegation policies. Note that the constraint of the
original authorisation policy (A;) is part of the constraint of AD, and is ANDed with the val i d-
clause constraint of D;. This specifies that the grantee can only execute the access rights whenever
the original subject can, and that the access rights are valid only as long as the valid-clause

constraint of the delegation policy is true.

inst auth+ AD, {

subject G

target T1

action actionLi st
when C and C

}
The following authorisation policy is also created to allow for cascaded delegation; i.e. to enable a
grantee who has been delegated the access rights to delegate them further to other members of the

grantee scope.

inst auth+ AD; {
subject G
target AS = Aut hService
action del egate(g, actionList)
when C and G- >includes(g) and del eg-acti ons->i ncl udes(actionLi st) and
(AS. cascadi ng(Di, g) < n)
}
The execution of a revocation action causes the authorisation service to delete the last two

generated authorisation policy instances (AD, and ADj).

5.4.2 Semantic Rules

Type definitions for both positive and negative delegation policies are very similar to those
specified for authorisation policies (see Section 5.3.1); the type is stored in the store A as is.

However, the instantiation of a delegation policy is different, since it must generate an

www.manaraa.com

128 Chapter 5. A Structural Operational Semantics

authorisation policy as informally described previously. The following rule (inst deleg+) shows the
execution of the instantiation of a positive delegation policy. A delegation instance is created from
which the authorisation policy is constructed as described above using a purely syntactical process.
Since in the semantics we require the instantiation of policies from policy types, we first generate
an authorisation policy type with no parameters, which can then be instantiated to get the desired
authorisation policy instance. Thus the execution of the instantiation of the delegation policy
amounts to executing the instantiation of the generated authorisation policy type as indicated by the

conclusion of the rule.

The authorisation policy is stored in the path where the delegation instance is stored. Note that the
delegation policy instance is also stored in the domain store because we need it later to construct
the other authorisation policies during the execution of the delegate method. The rule for a negative
delegation policy is very similar. The only thing that changes is the syntactic construction of the

corresponding delegation policy, which does not require the constraint for the delegation hops.

z; are new identifiers in o

rrisnewino

aut hPol : = A(pathy/ a)

A(path/t) = type deleg+ path/t (To a) (T1 X1, ..., Tn Xn) { Bdel eg+ }

(i, o0 A & (vali, o, A

0; = 01z — authPol] [zy~ vali] .[z,— val,]

Bdel eg+; = Bdel eg+[zo/ @, zi/ X1, .., zn/ Xp][Sstate — disabl ed]

dPol : = <Bdel eg+p>Pt

03 = Oy[ri — dPol]

N, = Al pathi/d — dPol]

adPol TypeDef := “type auth+ pathi/t,() {subject dPol (subject) ; target AS =

Aut hServi ce; action del egate(g, actionList); when dPol (constraint) and

dPol (action)->i ncl udes(actionList) and (AS. cascadi ng(path,/d, g) < dPol (hops) }”
(adPol TypeDef, o3, Ay [(03, I (inst

(inst deleg+ path)/d = path/t (path)a) (e, .,en), o A del eg+)
(inst auth+ pathy/a; = pathy/ty(), o3 A

Delegating Access Rights

The execution of the del egat e command is formalised in way similar to that described for the
instantiation of a delegation policy with the (inst deleg+) rule. The difference is that the rule for the
delegation generates two authorisation polices as we described informally in the previous
subsection. The (delegate) rule can be found in the appendix; we omit its description here for
clarity. Note that we assume there is only one delegation policy to authorise a particular delegation
of actions from the subject to the grantee. If more than one delegation policy allows the delegation
of the actions from the subject to the target, we assume that analysis at the specification time

selects only one based on specificity or prioritisation.

www.manaraa.com

Section 5.5. Obligation Policies 129

5.5 Obligation Policies

In the semantics of obligation policies described in this section, we do not cover the following:
¢ We do not specify the semantics for the catch-clause, i.e. the exception mechanism, for
obligation policies.
« We do not include the case of using a path as a prefix to an obligation action (to indicate an

action on a specific object in the target set instead of the entire target set).

We assume that an action always has a prefix. So if a prefix is omitted we always assign the subject
prefix to it. We simplify the semantics by only allowing the keyword subject or target to be
specified as the prefix to the action. Subject means, the current subject, where as target means the

target set of the policy.

5.5.1 Events

Obligation policies are event-triggered rules. This requires a different transition system to the one
used for the semantics of authorisation and delegation policies to include the event histories, which
trigger obligation policies. We adopt an approach similar to that described in [Lobo et al. 1999] to
specify the semantics for PDL, an event-based policy language. We interpret policies over event

histories where an event history is a sequence of event instances as defined below.

A named event is an event of the form: i dent (paraneters); it has a set of attribute names
associated with it, and denotes a class of events. An event instance includes values for all of the
attribute names of an event class. We adopt the following syntax: for a named event e (event class),
e' is an instance of e. We denote an event history with H, and we use E to stand for any event,
composite or basic. We denote an empty history by €. For the sake of simplicity we ignore Timer
events. A Timer event can be associated with a named event, which has no parameters; e.g. for
Timer. at (“17:00: 00”) we can assume a named event Ti nel sFi vePM which occurs at 05:00pm

everyday. Table 3.2 describes the operators used to compose events in Ponder (see Section 3.4.1).

We check whether an event E has occurred in an event history H, by checking whether there exists
a minimal event history for E in H. Borrowing the idea from [Lobo et al. 1999], we define a

minimal history of an event E as follows:

An event history H = €', ..., €, is a minimal history of E if and only if one of the following
conditions is true:
e E s abasic event = e(fy, ..., f). In this case n = 1. The history contains only one event and
there is an instance e'(vy, ..., vi) of event e(f,, ..., f) such that e' = e'; . We define (¢', E) to
be atrace T of E in H.

www.manaraa.com

130 Chapter 5. A Structural Operational Semantics

e E =E; - E, and there exists a minimal history H; for each E; such that H = Hy, H, H,,
where H, could be €, and H. is not a minimal history for E; or E,. If T, is a trace of E; in H;
and T, isatrace of E, in Hy, then T =Ty, T, is a trace of E in H.

« E=E;|E,, and there exists a minimal history H; for either E; or E,, such that H = H;. If T; is
a trace of E; in H, then T; is a trace of E in H.

e E=E; && E,, and there exists a minimal history H; for each E; such that H = Hy, H, H,, or
H = H,, H., Hi, where H. could be €, and H, is not a minimal history for E; or E,. If Ty is a
trace of E; inH; and Ty is atrace of E; in Hy, then T=Tq, T,or T =Ty, Tris atrace of E in
H.

e E=(E,) and H is a minimal history of E;. Any trace of E; in H is a trace of E in H.

e« E=m*FE withm>0. Thisis equivalentto E’; -~ E’, ... - E’,. The satisfaction of this is
based on the second case.

« E =E; + time. We define a named event e, with no parameters, which occurs time seconds
after E;. So E = E; - e,. The satisfaction of this is the same as in the second case.

e E={E;;E;}!Ej3 and there exists a minimal history H; for E;, and a minimal history H,
of E,, such that H = Hy, H¢, H,, and H, is not a minimal history of Es. If T1 is a trace of E; in

H; and T, is a trace of E, in H,, then T =T,, T, is a trace of E in H.

We define a function which determines whether an event E occurs in a given event history H =

€ 1, r ein-:

occ ::= event history, event - (true | false)
occ(H, E) = true, ifthereexistsa j suchthat H, = €';, .., €', isaminimal history of
E, andatrace T of E in this minimal history.
occ(H E) = false, otherwise.

We define as eAttrs(E) the list of attribute names of the event E and as eval ues(T) the list of
values for the attributes of the event instances in T, where T is a trace of E in an event history H.
We assume that the event service (ES), maintains an event history H; for each obligation policy O;
in the system (i.e. Q O Policies(A, oblig)). We introduce the following transition system for
the runtime execution of obligation policies, which includes the event histories. The terminal

configuration f ai | is introduced later to denote a failure in the execution of obligation actions.

Configurationeig ::= (Ponder term state, store, Zevent history U (state, store, Zevent

history U fail
b o: Configurationegig — Configurationgig

Figure 5.7 Configurations and transition rules for obligation policies

The following notation is used throughout the semantics to refer to, and manipulate event histories:

Z H denotes the list of all event histories.

www.manaraa.com

Section 5.5. Obligation Policies 131

(z H)[H — H] denotes the fact that the history Hy is changed to a new history H’,.
Z H, = (Z H)[H — H] denotes the updated history list.

(Z H)[H — H ;] denotes the fact that each history H; is updated to H’;.

We can retrieve the event history associated with an obligation policy by calling: ES(Q)) .
ES(Q) = H = (D H)[KI

An obligation policy object has the following elements:

bl i gObj ect ::= «subject = Dse, target = Dse, event = EventExpr, action =
bl i gAction, constraint = Expr, state = (true U fal se)»"P®

5.5.2 Obligation Policy Execution

In this section we discuss the execution of an enabled obligation policy when an event occurs that
triggers that policy. In the rules presented in the following discussion we use A to range over

ol i gAct i on and ba to range over Basi cActi on.

event

obligation
policy

"do target.action"

""""""""""""""""""""""" > exec(subject set, target set, action)

PR

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr > exec(s, target set, action)

subject
set

O O O O

Figure 5.8 Obligation policy execution

target
set

}> exec(s, t, action)

Figure 5.8 illustrates the execution of an obligation policy, and more precisely the execution of a
single target-based action in an obligation policy, i.e. we assume that the action element of the
policy is: do target.ba. When an event occurs that triggers the policy, both the subject and the
target sets of the policy are evaluated. The execution of an action of the form t ar get . act i on then
proceeds as follows: A4l subjects are asked to execute the action on a/l targets. For each subject,
this translates to a series of action calls on each target. We use the different variations of the exec
command to model action executions as described in Section 5.2.2. Thus, when the obligation is
triggered and the subject and target sets are evaluated, the term do target. ba is executed as a
command of the form exec(sets, set,, ba, (v)~) (i.e. the execution of the action ba on the set
of target objects by the set of subjects) . This command is translated to a series of: exec(s;, setq,

ba, (v)’) Os; O set, commands, each of which is in turn executed as a series of exec(s, t;,

www.manaraa.com

132 Chapter 5. A Structural Operational Semantics

ba, (v)") Ot; O set, commands. The rule (event exec target) shows the beginning of this
execution, i.e. the evaluation of the term do t ar get. ba. We use the occ function to determine if
the current event history, which results from the addition of a newly occurring event, triggers the
obligation policy. If it does, then the event history associated with the triggered obligation policy is
emptied. Note that the state o is updated with the values of the names that the event introduces, and
so the evaluation of the constraint, subject and target, all happen using the updated state with access
to those values. The execution of the action will also take place using the updated state (see the

conclusion of the rule).

new event instance e occurs

DHi= (D HIH = H +e]

pol O Policies(4A, oblig)
pol (action) = target. ba
pol (state) = enabl ed

Ho = ES(pol)
occ(H, pol(event)) = true and Tx is the trace of pol(event) in the history H
o =o0o[xi — valij] Ox; O eAttrs(pol(event)) and O val; O eVal ues(Ty)

(pol (constraint), o, A [(true, 04, A
(pol (subject), o ,, A [(sets, 0, A
(pol (target), o, A [(sety, 03 A

ZHM':(ZH')[H‘HE] (event

<e, 035 OO " <vi, 04 O exec

(do target.ba(ei.en), o, A, ZH 0. o (exec(sets, sety, ba, vi.v.), G4 A, ZH”‘ target)

The execution happens similarly when the action is subject-based i.e. for the term do subj ect . ba.
In that case the term evaluates to an exec(sets, sets, ba, (v)’) command that it is executed as
a series of exec(s;, s;, ba, (v)").Each of these commands hides the details of executing the ba
action internal to the subject (i.e. on the subject object itself) for every subject in the evaluated
subject set of the policy. The rules which describe how execution proceeds for both subject and

target based actions, as illustrated in Figure 5.8 can be found in Appendix C.

Failure of an action execution within the obligation context (a management component), means that
the action was denied by the access control system as shown in rule (exec fail) or by a refrain
policy; an action cannot be executed if there is a refrain that disallows the action execution as
shown in rule (exec refrain fail). Success means the action was allowed as shown in rule (exec
success). Note that we do not deal with failure of executing an action due to other reasons in this
specification (e.g. network failures etc). We introduce an explicit error configuration called f ai | to

model dynamic errors in the execution of actions.

O pol O Policies(A, refrain) (
. (exec
(di sal l ows(pol, s, t, ba), o, A, ZH th o(true, o, A ZH) refrain

fail
(exec(s, t, ba, vi.vy), o, A, ZH b o fail)

www.manaraa.com

Section 5.5. Obligation Policies 133

>

(exec(s, t, ba, vi.vy), G, . deny (exec

>

, ZH&ofail fail)

(exec(s, t, ba, vi.vy), o, A [, grant

(exec(s, t, ba, vi.vy), ©

(exec

, ZH b o(val, o, A, ZH success)

(exec(s, t, ba, vi.vy), o, A [O. (execFilter(s, t, ba, vi.v, filterExpr), o, A

>

(exec(s, t, ba, vi.vn, ©

(exec
(exec(s, t, ba, vi.vy), 0, A ZH O o success

(execFilter(s, t, ba, vi.v, filterExpr),o, A, z H filter)

The access control decision may return an execFi | t er command instead of a gr ant configuration,
if the execution is granted but there is a filter that must be applied to the result of the execution (see
Section 5.3.2). In that case the execution of an action evaluates to the execution of the execFi | t er
command as shown in rule (exec success filter). The following two rules show the execution of the
filter expressions i.e. the evaluation of execFi I t er. The filters are evaluated in order as described
by the first of the rules (exec filter next). Execution stops at the first filter whose condition
evaluates to true, and the return expression of that filter is applied to the value val that the normal
execution returns, described in rule (exec filter). The resulting value val * is returned as the result

of the filter execution.

filter, == if exprc {p1 = expri ...pn = €xprn; result = expr,}

(expre, o, A . (false, o, A (exec

(exec(s, t, ba, vi.v,filter;.filtery), o, A, ZH 0 o filter
next)

(exec(s, t, ba, vi.vpfiltery. filtery), os, A, ZH

z; are new identifiers in o
filtery, == if exprc {p1 = expri ...pn = €xprn,; result = expr,}
(expre, 01, A - (true, oy

A
(exec(s, t, ba, vi.vy), 0, A ZH - o(val, o, A, ZH

O3 = 0'2[21'—> vaI]
(expr,, 03, A O, " (val’, o, A (exec

filter)
(execFilter(s, t, ba, vi.vpfilterg.filtery), o, A, ZH b o (val’, a4 A, ZH

Execution of Composite Actions

The execution of composite policy actions, and the semantics of the concurrency operators were
given informally in Section 3.4.1 (see Table 3.3). The transition rules which formalise that

description are presented in Appendix C. We omit them from this discussion for reasons of clarity.

Refrain Policies

A di sal | ows command executed in the context of a policy management agent determines whether
the given action execution is disallowed by a refrain policy, and should thus be filtered from the
execution of an obligation policy, as demonstrated in the rule (exec refrain fail) described

previously. The rules which show the execution of the di sal | ows command for refrain policies are

www.manaraa.com

134 Chapter 5. A Structural Operational Semantics

very similar to those presented in Section 5.3.2 for the al | ows command in authorisation policies,
although the transition system is different. For example the following rule is the corresponding of
rule (allows false 5) and specifies that a refrain does not apply to the action execution if its
constraint evaluates to false, forcing the execution of di sal | ows to return false. For the complete

set of rules, the interested reader can see Appendix C.

ry, rp are newin o
Oy = 0[r;— t]
02=01[r2'—> S]

(pol (constraint), g, A 0. (false , 0y (refrain fal se 5)

A
(di sal l ows(pol, s,t,a), o, A, ZH 0. o (false, o, A ZH

5.6 Composite Policies

In this section we provide the semantics for the composite policy types by presenting the semantics
for groups and roles; relationships and management structures are executed in a similar way. Basic
policies (types and instances) inside a composite policy are stored in the directory entry
representing that composite policy. Any path specification prefix to the name of the basic policy is
thus discarded. We assume single inheritance for composite policy types with overriding of
common policy instances and policy types. Policy instances with the same name and policy types

with the same name and the same parameters, are overridden.

We define the following functions to enable the specification of the semantics:

e createDomain(4A, path/d) creates a new domain d under pat h, within the given store A.

* override(ConpTypeBody, ConpTypeBodypaserype) OVErrides the definitions in a composite
policy type body with those in the type of its base type and adds the two bodies together
taking into account the inheritance rules described.

e repl acePat h(ConpTypeBody, path) replaces the path which is prefix to the name of
policies (types and instances) within the body of a composite policy , with the given path.

e repl aceSubj ect (conpTypeBody, path) replaces the subject element of policies inside the

body of a composite policy, with the given path. This is used only for roles.

5.6.1 Groups

Composite (i.e. multiple) statements within a group are executed sequentially as described with
rules: (program1l), (program2). We use the same notation as before to represent composite policy

objects; components of a composite policy type are policy type definitions and policy objects:

ConpQbj ect ::= <«(Label Nane = (TypeDef U PolicyQbject)) >™Pre

www.manaraa.com

Section 5.6. Composite Policies 135

A group type is stored in the store as is if it does not extend any other group type as shown in rule
(type group). If a type extends another type, the bodies of the two types are combined, with all
common elements (policies) in the extending type overriding those in the base type. This is
described in rule (group type extends) which uses the over ri de function to combine the two group

bodies. The two rules apply to all composite policy structures.

N = Alpath/t — type group path/t (Ti X1, ..., Tn Xn) { Bgroup }] (type

(type group path/t (Ti X1, ..., Tn Xn) { Bgroup }, o, A - (o, A group)

z; are new identifiers ino

A(pathi/ty) = type group pathi/ty (Ty X1, ... Tn Xn) { Bgroup; } extends ...
¢/, o, A O. " (val;, o1, A

0, = 01z — val4] ..z, — val]

Bgroup, = Bgroupi[zi/ X1, .., Zn/ Xq]
Bgr oups = overri de(Bgroup, Bgroup,) (group
A, = Alpath — type group path/t (Ti Xi, .. T Xn) { Bgroups }] type

(type group path/t (Ti Xi,.,Th Xn) extends pathi/ti(es, .,en) { Bgroup } O (02 & ext ends)

An instantiation of a group type replaces the values for the actual parameters inside the body of the
group, creates a new domain entry for the group using the creat eDomai n function, changes the
domain paths for all policies inside the group body to the domain of the group using the
repl acePat h function, and evaluates the body of the resulting group instance as indicated by the
transition: (Bgroup,, o,, A, [© (gs, A, . This executes the statements in this body one at a
time, and thus creates and stores policy instances and types within the new domain entry. The
group instance is created and added to the state, but it is not placed in the store. The (inst group)
rule also shows that the body of the group (the policies inside the group) are evaluated with respect
to a new state resulting after all the parameters of the group have been added to the state: o, =
0i[2y — val 4] .[z, — val]

z; are new identifiers ino

rrisnewino

A(path/t) = type group path/t (Ti: X1, ..., Tn Xn) { Bgroup }

(¢, o, A O. " (val;, o1, A

0, = 0121 — val4] ..z, — val]

Bgroup; = Bgroup[zi/ X1, ... Znl Xn)

Bgr oup, = repl acePat h(Bgroup:, path/g)

A; = createDomai n(4A, pathi/g)

(Bgroupz, Gy, & b " (gs, Do

04 = O3] 11— <Bgroup,>P"t] (i nst group)

(inst group pathy/g = path/t(es, .., e, o, A b (ry, 04 N

5.6.2 Roles

A role type is stored in A in the same way this was described for groups. The instantiation rule for a
role is also very similar to that described for a group and is given below (role inst). The only
difference is that the subject of the policies inside the role is set to the subject domain of the role

using the r epl aceSubj ect function.

www.manaraa.com

136 Chapter 5. A Structural Operational Semantics

z; are new identifiers in o

rpisnewino

A(path/t) = type role path/t (T1 X1, ..., To Xn) { Brole }
(¢i, o, A O " (vali, o1, A

0y = 0121 — val 4] .[zn— val]

Brol e, = Brole[zi/ X1, ... Zn/ Xp]
Brol e, = repl acePat h(Brol e;, path/g)
Brol e; = repl aceSubj ect (Brol e;, pathy)

A, = createDomai n(4A, pathi/g)
(Broles, 0, Ay O " (03, I
04 = O3 11 — < Brol eg>Pt

- (inst role)
(inst role pathy/g = path/t(ei, .., e, @ath,, o, A b (ri, 04 L

5.7 Domain System Model

We use Alloy [Jackson 2000] to specify a model of the domain system, which can then be analysed
using the alloy constraint analyser [Jackson et al. 2000] to demonstrate that it doesn’t suffer from
under- or over-constraint. We include the graphical representation of the alloy model below (Figure

5.9); the complete textual representation is included in Appendix C, with appropriate comments.

contents

Managed
Object

DomainEntry name Name

parent
(~children)

entries

NonDomainObj DomainObj

Root!

Figure 5.9 Graphical alloy domain-system model

The model consists of managed objects, which are either non-domain objects (NonDomai nCbj) or
domain objects (Domai noj). The two classifications of the managed objects are static indicated
with the vertical line on the left of their corresponding boxes. This means that an object cannot be
both a domain and a non-domain object, preventing a non-domain object from becoming a domain
object during its lifetime, and vice-versa. The filled arrowhead indicates that this is a partition of
managed objects; they can only be either domain or non-domain objects. The root is a domain
object, and there is only one root indicated with the exclamation mark next to the word Root. The
root is a particular type of domain object which is fixed (indicated with the vertical lines on both

sides of the root box).

www.manaraa.com

Section 5.8. Conclusions 137

Domain objects contain one or more domain entries (DomainEntry), which can be accessed using
the entries relation on domain objects. Each domain entry has a unigque name (assumed to be drawn
from a fixed set of predefined names), as well as unique contents. The contents of a domain entry is

a managed object and can be accessed using the contents relation.

The above diagram cannot express the operations part of the alloy specification, which is included
in Appendix C. We specify the operations:
* op NewDommi nEntries (d: DomainCbj, es: DomminEntry’), to add a set of entries es,
to a domain d.
e op Create (d: DomainQbj!, o: Object’!, n: Name), to create a new object o with
name n, in a domain d and
e op DeleteEntry (d: DomainCbj!, n: Nane), to delete an entry with name n from

domain d.

We then use assertions to ensure that the execution of these operations does not leave the system in
an inconsistent state (see Appendix C). Note that the operation of moving an object from one

domain to the other can be performed as a sequence of create and delete operations.

5.8 Conclusions

In this chapter we have given a structural operational semantics to the policy specification language
presented in Chapters 3 and 4. The semantics treats policies as objects with a predefined set of
attributes corresponding to the elements of each policy type. We have presented the semantics by
separating the execution of authorisation and delegation policies (i.e. the access control
enforcement), from the execution of obligation and refrain policies (i.e. the subject-based policy
enforcement). The operational semantics is a term rewrite system which maps configurations
consisting of Ponder terms to new configurations, and shows the step-by-step execution of those
terms. Policy specifications are evaluated in the context of a domain store, a state, and the list of
event histories if the specification involves subject-based policies. We handle policy specification,
instantiation and storage in the domain service, as wel